Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Obfuscated malware detection using dilated convolutional network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146547" target="_blank" >RIV/00216305:26220/22:PU146547 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/9943443" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9943443</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICUMT57764.2022.9943443" target="_blank" >10.1109/ICUMT57764.2022.9943443</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Obfuscated malware detection using dilated convolutional network

  • Popis výsledku v původním jazyce

    Nowadays, information security is a critical field of research since information technologies develop rapidly. Consequently, the possible attacks are also evolving. One of the problems is malware detection. There is no doubt that many antivirus software can catch most cases. However, it is important to remember that such software is one step behind the malware. Here we introduce artificial intelligence that can help to detect obfuscated malware in memory. Modern architectures of a neural network can detect even unknown malware and distinguish whether there is something malicious or not. This paper deals with the problem of the detection of obfuscated malware in memory. Most existing approaches use custom datasets or Microsoft Malware Classification Challenge dataset (BIG2015). However, we applied the latest dataset CIC-MalMem-2022, which reflects the current state of technologies. This dataset contains samples with benign and malware cases. Additionally, the authors provided the family and type of malware, so it is possible to perform advanced experiments. This paper provides techniques for the detection and classification of malware from given memory information. Firstly, the traditional machine learning methods are tested with optimisation techniques; secondly, the dilated convolutional network is proposed. According to the results, the detection by all methods has an accuracy of 0.99. However, the most accurate is a random forest. On the other hand, the proposed neural network architecture is the best for classifying the malware family and has achieved an accuracy of 0.83.

  • Název v anglickém jazyce

    Obfuscated malware detection using dilated convolutional network

  • Popis výsledku anglicky

    Nowadays, information security is a critical field of research since information technologies develop rapidly. Consequently, the possible attacks are also evolving. One of the problems is malware detection. There is no doubt that many antivirus software can catch most cases. However, it is important to remember that such software is one step behind the malware. Here we introduce artificial intelligence that can help to detect obfuscated malware in memory. Modern architectures of a neural network can detect even unknown malware and distinguish whether there is something malicious or not. This paper deals with the problem of the detection of obfuscated malware in memory. Most existing approaches use custom datasets or Microsoft Malware Classification Challenge dataset (BIG2015). However, we applied the latest dataset CIC-MalMem-2022, which reflects the current state of technologies. This dataset contains samples with benign and malware cases. Additionally, the authors provided the family and type of malware, so it is possible to perform advanced experiments. This paper provides techniques for the detection and classification of malware from given memory information. Firstly, the traditional machine learning methods are tested with optimisation techniques; secondly, the dilated convolutional network is proposed. According to the results, the detection by all methods has an accuracy of 0.99. However, the most accurate is a random forest. On the other hand, the proposed neural network architecture is the best for classifying the malware family and has achieved an accuracy of 0.83.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FW03010273" target="_blank" >FW03010273: Defektoskopie lakovaných dílů s pomocí automatické adaptace neuronových sítí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2022 14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)

  • ISBN

    979-8-3503-9866-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    110-115

  • Název nakladatele

    IEEE

  • Místo vydání

    Valencia, Spain

  • Místo konání akce

    Valencia, Spain

  • Datum konání akce

    11. 10. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku