Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Electric Vehicle Charging/Discharging Models for Estimation of Load Profile in Grid Environments

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146806" target="_blank" >RIV/00216305:26220/22:PU146806 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/full/10.1080/15325008.2022.2146811" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/15325008.2022.2146811</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/15325008.2022.2146811" target="_blank" >10.1080/15325008.2022.2146811</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Electric Vehicle Charging/Discharging Models for Estimation of Load Profile in Grid Environments

  • Popis výsledku v původním jazyce

    The increasing electric vehicles (EVs) and their integration with the electrical networks to achieve the charging demands has highly affected the operation of the power system. These effects are due to the increased and variable amount of electricity consumption caused by the irregular charging patterns of EVs. As the EV penetration level increases with such irregular charging patterns, the overall load profile in a network will increase resulting in load peaks. To overcome this, a well-planned charging-discharging algorithm is needed for the EV users and the power suppliers. In light of the above issues and requirements, this paper proposes a Markov Chain Monte Carlo (MCMC) simulation-based EV charging (EVC) behavior models and charging-discharging power prediction models. The proposed methods analyze the traveling behavior of EVs, and their charging patterns to make EV a flexible load. This helps in understanding the variable electricity consumption and mitigating the peak loads and load variations. Further, to assess the operation of the proposed methods, the charging-discharging power prediction is carried out for a large EV fleet based on the historical data. The power predictions are carried out for 100 days and the convergence of the proposed algorithm is targeted to be kept below 0.5% to achieve optimal power prediction. The results showed the credibility of the proposed approach in identifying the daily average charging-discharging load curves.

  • Název v anglickém jazyce

    Electric Vehicle Charging/Discharging Models for Estimation of Load Profile in Grid Environments

  • Popis výsledku anglicky

    The increasing electric vehicles (EVs) and their integration with the electrical networks to achieve the charging demands has highly affected the operation of the power system. These effects are due to the increased and variable amount of electricity consumption caused by the irregular charging patterns of EVs. As the EV penetration level increases with such irregular charging patterns, the overall load profile in a network will increase resulting in load peaks. To overcome this, a well-planned charging-discharging algorithm is needed for the EV users and the power suppliers. In light of the above issues and requirements, this paper proposes a Markov Chain Monte Carlo (MCMC) simulation-based EV charging (EVC) behavior models and charging-discharging power prediction models. The proposed methods analyze the traveling behavior of EVs, and their charging patterns to make EV a flexible load. This helps in understanding the variable electricity consumption and mitigating the peak loads and load variations. Further, to assess the operation of the proposed methods, the charging-discharging power prediction is carried out for a large EV fleet based on the historical data. The power predictions are carried out for 100 days and the convergence of the proposed algorithm is targeted to be kept below 0.5% to achieve optimal power prediction. The results showed the credibility of the proposed approach in identifying the daily average charging-discharging load curves.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ELECTRIC POWER COMPONENTS AND SYSTEMS

  • ISSN

    1532-5008

  • e-ISSN

    1532-5016

  • Svazek periodika

    2022

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    000899058000001

  • EID výsledku v databázi Scopus

    2-s2.0-85144149758