Electric Vehicle Charging/Discharging Models for Estimation of Load Profile in Grid Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146806" target="_blank" >RIV/00216305:26220/22:PU146806 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/15325008.2022.2146811" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/15325008.2022.2146811</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/15325008.2022.2146811" target="_blank" >10.1080/15325008.2022.2146811</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electric Vehicle Charging/Discharging Models for Estimation of Load Profile in Grid Environments
Popis výsledku v původním jazyce
The increasing electric vehicles (EVs) and their integration with the electrical networks to achieve the charging demands has highly affected the operation of the power system. These effects are due to the increased and variable amount of electricity consumption caused by the irregular charging patterns of EVs. As the EV penetration level increases with such irregular charging patterns, the overall load profile in a network will increase resulting in load peaks. To overcome this, a well-planned charging-discharging algorithm is needed for the EV users and the power suppliers. In light of the above issues and requirements, this paper proposes a Markov Chain Monte Carlo (MCMC) simulation-based EV charging (EVC) behavior models and charging-discharging power prediction models. The proposed methods analyze the traveling behavior of EVs, and their charging patterns to make EV a flexible load. This helps in understanding the variable electricity consumption and mitigating the peak loads and load variations. Further, to assess the operation of the proposed methods, the charging-discharging power prediction is carried out for a large EV fleet based on the historical data. The power predictions are carried out for 100 days and the convergence of the proposed algorithm is targeted to be kept below 0.5% to achieve optimal power prediction. The results showed the credibility of the proposed approach in identifying the daily average charging-discharging load curves.
Název v anglickém jazyce
Electric Vehicle Charging/Discharging Models for Estimation of Load Profile in Grid Environments
Popis výsledku anglicky
The increasing electric vehicles (EVs) and their integration with the electrical networks to achieve the charging demands has highly affected the operation of the power system. These effects are due to the increased and variable amount of electricity consumption caused by the irregular charging patterns of EVs. As the EV penetration level increases with such irregular charging patterns, the overall load profile in a network will increase resulting in load peaks. To overcome this, a well-planned charging-discharging algorithm is needed for the EV users and the power suppliers. In light of the above issues and requirements, this paper proposes a Markov Chain Monte Carlo (MCMC) simulation-based EV charging (EVC) behavior models and charging-discharging power prediction models. The proposed methods analyze the traveling behavior of EVs, and their charging patterns to make EV a flexible load. This helps in understanding the variable electricity consumption and mitigating the peak loads and load variations. Further, to assess the operation of the proposed methods, the charging-discharging power prediction is carried out for a large EV fleet based on the historical data. The power predictions are carried out for 100 days and the convergence of the proposed algorithm is targeted to be kept below 0.5% to achieve optimal power prediction. The results showed the credibility of the proposed approach in identifying the daily average charging-discharging load curves.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ELECTRIC POWER COMPONENTS AND SYSTEMS
ISSN
1532-5008
e-ISSN
1532-5016
Svazek periodika
2022
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
000899058000001
EID výsledku v databázi Scopus
2-s2.0-85144149758