Evaluation of Nested U-Net models performance on MVTec AD dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146825" target="_blank" >RIV/00216305:26220/22:PU146825 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICUMT57764.2022.9943348" target="_blank" >http://dx.doi.org/10.1109/ICUMT57764.2022.9943348</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICUMT57764.2022.9943348" target="_blank" >10.1109/ICUMT57764.2022.9943348</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of Nested U-Net models performance on MVTec AD dataset
Popis výsledku v původním jazyce
Anomaly detection (AD) from image data using convolutional neural networks and deep learning has become a widespread topic among both scientists and engineers. In addition to the development of new methods and models, specialized datasets are created as well. The most cited dataset specialised on anomaly detection tasks and created for testing the most recent methods is MVTec AD. This dataset has been used in more than 40 articles which are mainly devoted to creating or modifying AD methods. Subsequently, their performance is usually tested on the MVTec AD dataset. However, despite a large number of different methods and models, there is a lack of performance evaluation of U-Net++ (Nested U-Net architecture), a robust model which is well-known in the field of segmentation tasks. This article is focused on the evaluation of two Nested U-Net architectures (U-Net++, ANU-Net) on the MVTec AD dataset. It is shown that the direct use of the Nested U-Net models to reconstruct anomaly-free input data together with their strong augmentation during training phase leads to inability to reconstruct image data with anomalies at inference time. Achieved results can compete with some of the state-of-the-art reconstruction-based methods. The average image-level AUROC performance of U-Net++ model is 97.9% and 96.2% for image size of 64×64 and 128×128 pixels, respectively. Further, the average performance of ANU-Net on image-level detection is 96.5% and 96.8% for image size of 64×64 and 128x128 pixels, respectively.
Název v anglickém jazyce
Evaluation of Nested U-Net models performance on MVTec AD dataset
Popis výsledku anglicky
Anomaly detection (AD) from image data using convolutional neural networks and deep learning has become a widespread topic among both scientists and engineers. In addition to the development of new methods and models, specialized datasets are created as well. The most cited dataset specialised on anomaly detection tasks and created for testing the most recent methods is MVTec AD. This dataset has been used in more than 40 articles which are mainly devoted to creating or modifying AD methods. Subsequently, their performance is usually tested on the MVTec AD dataset. However, despite a large number of different methods and models, there is a lack of performance evaluation of U-Net++ (Nested U-Net architecture), a robust model which is well-known in the field of segmentation tasks. This article is focused on the evaluation of two Nested U-Net architectures (U-Net++, ANU-Net) on the MVTec AD dataset. It is shown that the direct use of the Nested U-Net models to reconstruct anomaly-free input data together with their strong augmentation during training phase leads to inability to reconstruct image data with anomalies at inference time. Achieved results can compete with some of the state-of-the-art reconstruction-based methods. The average image-level AUROC performance of U-Net++ model is 97.9% and 96.2% for image size of 64×64 and 128×128 pixels, respectively. Further, the average performance of ANU-Net on image-level detection is 96.5% and 96.8% for image size of 64×64 and 128x128 pixels, respectively.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/FW03010273" target="_blank" >FW03010273: Defektoskopie lakovaných dílů s pomocí automatické adaptace neuronových sítí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
979-8-3503-9866-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
70-75
Název nakladatele
IEEE
Místo vydání
Valencia, Spain
Místo konání akce
Valencia, Spain
Datum konání akce
11. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—