Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of Nested U-Net models performance on MVTec AD dataset

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146825" target="_blank" >RIV/00216305:26220/22:PU146825 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/ICUMT57764.2022.9943348" target="_blank" >http://dx.doi.org/10.1109/ICUMT57764.2022.9943348</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICUMT57764.2022.9943348" target="_blank" >10.1109/ICUMT57764.2022.9943348</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of Nested U-Net models performance on MVTec AD dataset

  • Popis výsledku v původním jazyce

    Anomaly detection (AD) from image data using convolutional neural networks and deep learning has become a widespread topic among both scientists and engineers. In addition to the development of new methods and models, specialized datasets are created as well. The most cited dataset specialised on anomaly detection tasks and created for testing the most recent methods is MVTec AD. This dataset has been used in more than 40 articles which are mainly devoted to creating or modifying AD methods. Subsequently, their performance is usually tested on the MVTec AD dataset. However, despite a large number of different methods and models, there is a lack of performance evaluation of U-Net++ (Nested U-Net architecture), a robust model which is well-known in the field of segmentation tasks. This article is focused on the evaluation of two Nested U-Net architectures (U-Net++, ANU-Net) on the MVTec AD dataset. It is shown that the direct use of the Nested U-Net models to reconstruct anomaly-free input data together with their strong augmentation during training phase leads to inability to reconstruct image data with anomalies at inference time. Achieved results can compete with some of the state-of-the-art reconstruction-based methods. The average image-level AUROC performance of U-Net++ model is 97.9% and 96.2% for image size of 64×64 and 128×128 pixels, respectively. Further, the average performance of ANU-Net on image-level detection is 96.5% and 96.8% for image size of 64×64 and 128x128 pixels, respectively.

  • Název v anglickém jazyce

    Evaluation of Nested U-Net models performance on MVTec AD dataset

  • Popis výsledku anglicky

    Anomaly detection (AD) from image data using convolutional neural networks and deep learning has become a widespread topic among both scientists and engineers. In addition to the development of new methods and models, specialized datasets are created as well. The most cited dataset specialised on anomaly detection tasks and created for testing the most recent methods is MVTec AD. This dataset has been used in more than 40 articles which are mainly devoted to creating or modifying AD methods. Subsequently, their performance is usually tested on the MVTec AD dataset. However, despite a large number of different methods and models, there is a lack of performance evaluation of U-Net++ (Nested U-Net architecture), a robust model which is well-known in the field of segmentation tasks. This article is focused on the evaluation of two Nested U-Net architectures (U-Net++, ANU-Net) on the MVTec AD dataset. It is shown that the direct use of the Nested U-Net models to reconstruct anomaly-free input data together with their strong augmentation during training phase leads to inability to reconstruct image data with anomalies at inference time. Achieved results can compete with some of the state-of-the-art reconstruction-based methods. The average image-level AUROC performance of U-Net++ model is 97.9% and 96.2% for image size of 64×64 and 128×128 pixels, respectively. Further, the average performance of ANU-Net on image-level detection is 96.5% and 96.8% for image size of 64×64 and 128x128 pixels, respectively.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FW03010273" target="_blank" >FW03010273: Defektoskopie lakovaných dílů s pomocí automatické adaptace neuronových sítí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2022 14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)

  • ISBN

    979-8-3503-9866-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    70-75

  • Název nakladatele

    IEEE

  • Místo vydání

    Valencia, Spain

  • Místo konání akce

    Valencia, Spain

  • Datum konání akce

    11. 10. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku