Systematic Evaluation of Convolution Neural Network Advances on the ImageNet
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311817" target="_blank" >RIV/68407700:21230/17:00311817 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1077314217300814" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1077314217300814</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cviu.2017.05.007" target="_blank" >10.1016/j.cviu.2017.05.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Systematic Evaluation of Convolution Neural Network Advances on the ImageNet
Popis výsledku v původním jazyce
The paper systematically studies the impact of a range of recent advances in convolution neural network (CNN) architectures and learning methods on the object categorization (ILSVRC) problem. The evaluation tests the influence of the following choices of the architecture: non-linearity (ReLU, ELU, maxout, compatability with batch normalization), pooling variants (stochastic, max, average, mixed), network width, classifier design (convolutional, fully-connected, SPP), image pre-processing, and of learning parameters: learning rate, batch size, cleanliness of the data, etc. The performance gains of the proposed modifications are first tested individually and then in combination. The sum of individual gains is greater than the observed improvement when all modifications are introduced, but the “deficit” is small suggesting independence of their benefits. We show that the use of 128 x 128 pixel images is sufficient to make qualitative conclusions about optimal network structure that hold for the full size Caffe and VGG nets. The results are obtained an order of magnitude faster than with the standard 224 pixel images.
Název v anglickém jazyce
Systematic Evaluation of Convolution Neural Network Advances on the ImageNet
Popis výsledku anglicky
The paper systematically studies the impact of a range of recent advances in convolution neural network (CNN) architectures and learning methods on the object categorization (ILSVRC) problem. The evaluation tests the influence of the following choices of the architecture: non-linearity (ReLU, ELU, maxout, compatability with batch normalization), pooling variants (stochastic, max, average, mixed), network width, classifier design (convolutional, fully-connected, SPP), image pre-processing, and of learning parameters: learning rate, batch size, cleanliness of the data, etc. The performance gains of the proposed modifications are first tested individually and then in combination. The sum of individual gains is greater than the observed improvement when all modifications are introduced, but the “deficit” is small suggesting independence of their benefits. We show that the use of 128 x 128 pixel images is sufficient to make qualitative conclusions about optimal network structure that hold for the full size Caffe and VGG nets. The results are obtained an order of magnitude faster than with the standard 224 pixel images.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Vision and Image Understanding
ISSN
1077-3142
e-ISSN
1090-235X
Svazek periodika
161
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
11-19
Kód UT WoS článku
000410718600002
EID výsledku v databázi Scopus
2-s2.0-85019358051