Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Systematic Evaluation of Convolution Neural Network Advances on the ImageNet

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311817" target="_blank" >RIV/68407700:21230/17:00311817 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S1077314217300814" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1077314217300814</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cviu.2017.05.007" target="_blank" >10.1016/j.cviu.2017.05.007</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Systematic Evaluation of Convolution Neural Network Advances on the ImageNet

  • Popis výsledku v původním jazyce

    The paper systematically studies the impact of a range of recent advances in convolution neural network (CNN) architectures and learning methods on the object categorization (ILSVRC) problem. The evaluation tests the influence of the following choices of the architecture: non-linearity (ReLU, ELU, maxout, compatability with batch normalization), pooling variants (stochastic, max, average, mixed), network width, classifier design (convolutional, fully-connected, SPP), image pre-processing, and of learning parameters: learning rate, batch size, cleanliness of the data, etc. The performance gains of the proposed modifications are first tested individually and then in combination. The sum of individual gains is greater than the observed improvement when all modifications are introduced, but the “deficit” is small suggesting independence of their benefits. We show that the use of 128 x 128 pixel images is sufficient to make qualitative conclusions about optimal network structure that hold for the full size Caffe and VGG nets. The results are obtained an order of magnitude faster than with the standard 224 pixel images.

  • Název v anglickém jazyce

    Systematic Evaluation of Convolution Neural Network Advances on the ImageNet

  • Popis výsledku anglicky

    The paper systematically studies the impact of a range of recent advances in convolution neural network (CNN) architectures and learning methods on the object categorization (ILSVRC) problem. The evaluation tests the influence of the following choices of the architecture: non-linearity (ReLU, ELU, maxout, compatability with batch normalization), pooling variants (stochastic, max, average, mixed), network width, classifier design (convolutional, fully-connected, SPP), image pre-processing, and of learning parameters: learning rate, batch size, cleanliness of the data, etc. The performance gains of the proposed modifications are first tested individually and then in combination. The sum of individual gains is greater than the observed improvement when all modifications are introduced, but the “deficit” is small suggesting independence of their benefits. We show that the use of 128 x 128 pixel images is sufficient to make qualitative conclusions about optimal network structure that hold for the full size Caffe and VGG nets. The results are obtained an order of magnitude faster than with the standard 224 pixel images.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Vision and Image Understanding

  • ISSN

    1077-3142

  • e-ISSN

    1090-235X

  • Svazek periodika

    161

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    11-19

  • Kód UT WoS článku

    000410718600002

  • EID výsledku v databázi Scopus

    2-s2.0-85019358051