Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Anomaly detection for real-world industrial applications: benchmarking recent self-supervised and pretrained methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146889" target="_blank" >RIV/00216305:26220/22:PU146889 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9943437" target="_blank" >https://ieeexplore.ieee.org/document/9943437</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICUMT57764.2022.9943437" target="_blank" >10.1109/ICUMT57764.2022.9943437</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Anomaly detection for real-world industrial applications: benchmarking recent self-supervised and pretrained methods

  • Popis výsledku v původním jazyce

    Visual anomaly detection (AD) is currently a very active research area with great potential in many real-world applications, e.g. quality control in industry and manufacturing, where it can provide cost savings and overall better product quality. Recently, many new anomaly detection methods have been introduced and many of them are intended for industrial usage. These methods are usually evaluated on a narrow selection of datasets that may differ significantly from certain types of real-world applications. Due to this approach, some methods provide different performance when deployed in real use cases. In this paper, we perform evaluation of recent state of the art visual anomaly detection methods on the problem of defect detection in metal parts fabrication, an area not well covered in existing publications. We introduce a new dataset focused specifically on the problem of metal parts fabrication and use the dataset to perform the evaluation. For the evaluation, we selected methods that use two different feature extraction approaches for anomaly detection. One of the approaches is using feature extractors pretrained on the ImageNet dataset and the second approach is training the feature extractor from scratch using self-supervised learning. We show that, in contrast to one of the most widely used anomaly detection benchmark - the MVTec-AD dataset, self-supervised methods perform significantly better (in average by 17 % AUROC) on the proposed dataset.

  • Název v anglickém jazyce

    Anomaly detection for real-world industrial applications: benchmarking recent self-supervised and pretrained methods

  • Popis výsledku anglicky

    Visual anomaly detection (AD) is currently a very active research area with great potential in many real-world applications, e.g. quality control in industry and manufacturing, where it can provide cost savings and overall better product quality. Recently, many new anomaly detection methods have been introduced and many of them are intended for industrial usage. These methods are usually evaluated on a narrow selection of datasets that may differ significantly from certain types of real-world applications. Due to this approach, some methods provide different performance when deployed in real use cases. In this paper, we perform evaluation of recent state of the art visual anomaly detection methods on the problem of defect detection in metal parts fabrication, an area not well covered in existing publications. We introduce a new dataset focused specifically on the problem of metal parts fabrication and use the dataset to perform the evaluation. For the evaluation, we selected methods that use two different feature extraction approaches for anomaly detection. One of the approaches is using feature extractors pretrained on the ImageNet dataset and the second approach is training the feature extractor from scratch using self-supervised learning. We show that, in contrast to one of the most widely used anomaly detection benchmark - the MVTec-AD dataset, self-supervised methods perform significantly better (in average by 17 % AUROC) on the proposed dataset.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FW03010273" target="_blank" >FW03010273: Defektoskopie lakovaných dílů s pomocí automatické adaptace neuronových sítí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2022 14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)

  • ISBN

    979-8-3503-9866-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    64-69

  • Název nakladatele

    IEEE

  • Místo vydání

    Valencia, Spain

  • Místo konání akce

    Valencia, Spain

  • Datum konání akce

    11. 10. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku