Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU145368" target="_blank" >RIV/00216305:26220/23:PU145368 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.lww.com/investigativeradiology/Abstract/9900/Deep_Learning_for_Automatic_Bone_Marrow_Apparent.64.aspx" target="_blank" >https://journals.lww.com/investigativeradiology/Abstract/9900/Deep_Learning_for_Automatic_Bone_Marrow_Apparent.64.aspx</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1097/RLI.0000000000000932" target="_blank" >10.1097/RLI.0000000000000932</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study

  • Popis výsledku v původním jazyce

    Objectives: Diffusion-weighted magnetic resonance imaging plays an increasing role in patients with multiple myeloma. The objective of this study was to develop and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient maps in patients with multiple myeloma, by automatically segmentation of pelvic bones and subsequent extraction of objective, representative ADC measurements from each bone. Material and Methods: This retrospective multicentric study used 180 MRIs from 54 patients for developing an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone. Precision of the automatic segmentation was tested on 15 wb-MRIs from 3 centers using the dice score. In three independent test-sets from three centers, which comprised a total of 312 whole-body MRIs, agreement between automatically extracted mean ADC values from the nnU-Net segmentation were compared to manual ADC-measurements by two radiologists. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. In 56 patients with newly diagnosed multiple myeloma who had undergone bone marrow biopsy, ADC-values were correlated with biopsy results using Spearman correlation. Results: The ADC-nnU-Net achieved automatic segmentations with mean dice scores of 0.92, 0.93, and 0.85 for the right pelvis, the left pelvis, and the sacral bone, while the interrater experiment gave mean dice scores of 0.86, 0.86 and 0.77, respectively. The agreement between radiologists’ manual ADC measurements and automatic ADC measurements was as follows: the bias between the first rater and the automatic approach was 49 x10-6 mm2/s, 7 x10-6 mm2/s and -58 x10-6 mm2/s, and the bias between the second rater and the automatic approach was 12 x10-6 mm2/s, 2 x10-6 mm2/s and -66 x10-6 mm2/s for the right pelvis, the left pelvis, and the sacral bone. The bias betw

  • Název v anglickém jazyce

    Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study

  • Popis výsledku anglicky

    Objectives: Diffusion-weighted magnetic resonance imaging plays an increasing role in patients with multiple myeloma. The objective of this study was to develop and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient maps in patients with multiple myeloma, by automatically segmentation of pelvic bones and subsequent extraction of objective, representative ADC measurements from each bone. Material and Methods: This retrospective multicentric study used 180 MRIs from 54 patients for developing an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone. Precision of the automatic segmentation was tested on 15 wb-MRIs from 3 centers using the dice score. In three independent test-sets from three centers, which comprised a total of 312 whole-body MRIs, agreement between automatically extracted mean ADC values from the nnU-Net segmentation were compared to manual ADC-measurements by two radiologists. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. In 56 patients with newly diagnosed multiple myeloma who had undergone bone marrow biopsy, ADC-values were correlated with biopsy results using Spearman correlation. Results: The ADC-nnU-Net achieved automatic segmentations with mean dice scores of 0.92, 0.93, and 0.85 for the right pelvis, the left pelvis, and the sacral bone, while the interrater experiment gave mean dice scores of 0.86, 0.86 and 0.77, respectively. The agreement between radiologists’ manual ADC measurements and automatic ADC measurements was as follows: the bias between the first rater and the automatic approach was 49 x10-6 mm2/s, 7 x10-6 mm2/s and -58 x10-6 mm2/s, and the bias between the second rater and the automatic approach was 12 x10-6 mm2/s, 2 x10-6 mm2/s and -66 x10-6 mm2/s for the right pelvis, the left pelvis, and the sacral bone. The bias betw

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30204 - Oncology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INVESTIGATIVE RADIOLOGY

  • ISSN

    0020-9996

  • e-ISSN

    1536-0210

  • Svazek periodika

    58

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    273-282

  • Kód UT WoS článku

    000958267800004

  • EID výsledku v databázi Scopus

    2-s2.0-85150040717