Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU145368" target="_blank" >RIV/00216305:26220/23:PU145368 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.lww.com/investigativeradiology/Abstract/9900/Deep_Learning_for_Automatic_Bone_Marrow_Apparent.64.aspx" target="_blank" >https://journals.lww.com/investigativeradiology/Abstract/9900/Deep_Learning_for_Automatic_Bone_Marrow_Apparent.64.aspx</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1097/RLI.0000000000000932" target="_blank" >10.1097/RLI.0000000000000932</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study
Popis výsledku v původním jazyce
Objectives: Diffusion-weighted magnetic resonance imaging plays an increasing role in patients with multiple myeloma. The objective of this study was to develop and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient maps in patients with multiple myeloma, by automatically segmentation of pelvic bones and subsequent extraction of objective, representative ADC measurements from each bone. Material and Methods: This retrospective multicentric study used 180 MRIs from 54 patients for developing an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone. Precision of the automatic segmentation was tested on 15 wb-MRIs from 3 centers using the dice score. In three independent test-sets from three centers, which comprised a total of 312 whole-body MRIs, agreement between automatically extracted mean ADC values from the nnU-Net segmentation were compared to manual ADC-measurements by two radiologists. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. In 56 patients with newly diagnosed multiple myeloma who had undergone bone marrow biopsy, ADC-values were correlated with biopsy results using Spearman correlation. Results: The ADC-nnU-Net achieved automatic segmentations with mean dice scores of 0.92, 0.93, and 0.85 for the right pelvis, the left pelvis, and the sacral bone, while the interrater experiment gave mean dice scores of 0.86, 0.86 and 0.77, respectively. The agreement between radiologists’ manual ADC measurements and automatic ADC measurements was as follows: the bias between the first rater and the automatic approach was 49 x10-6 mm2/s, 7 x10-6 mm2/s and -58 x10-6 mm2/s, and the bias between the second rater and the automatic approach was 12 x10-6 mm2/s, 2 x10-6 mm2/s and -66 x10-6 mm2/s for the right pelvis, the left pelvis, and the sacral bone. The bias betw
Název v anglickém jazyce
Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study
Popis výsledku anglicky
Objectives: Diffusion-weighted magnetic resonance imaging plays an increasing role in patients with multiple myeloma. The objective of this study was to develop and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient maps in patients with multiple myeloma, by automatically segmentation of pelvic bones and subsequent extraction of objective, representative ADC measurements from each bone. Material and Methods: This retrospective multicentric study used 180 MRIs from 54 patients for developing an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone. Precision of the automatic segmentation was tested on 15 wb-MRIs from 3 centers using the dice score. In three independent test-sets from three centers, which comprised a total of 312 whole-body MRIs, agreement between automatically extracted mean ADC values from the nnU-Net segmentation were compared to manual ADC-measurements by two radiologists. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. In 56 patients with newly diagnosed multiple myeloma who had undergone bone marrow biopsy, ADC-values were correlated with biopsy results using Spearman correlation. Results: The ADC-nnU-Net achieved automatic segmentations with mean dice scores of 0.92, 0.93, and 0.85 for the right pelvis, the left pelvis, and the sacral bone, while the interrater experiment gave mean dice scores of 0.86, 0.86 and 0.77, respectively. The agreement between radiologists’ manual ADC measurements and automatic ADC measurements was as follows: the bias between the first rater and the automatic approach was 49 x10-6 mm2/s, 7 x10-6 mm2/s and -58 x10-6 mm2/s, and the bias between the second rater and the automatic approach was 12 x10-6 mm2/s, 2 x10-6 mm2/s and -66 x10-6 mm2/s for the right pelvis, the left pelvis, and the sacral bone. The bias betw
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30204 - Oncology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INVESTIGATIVE RADIOLOGY
ISSN
0020-9996
e-ISSN
1536-0210
Svazek periodika
58
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
273-282
Kód UT WoS článku
000958267800004
EID výsledku v databázi Scopus
2-s2.0-85150040717