Image Noise Removal in Ultrasound Breast Images Based on Hybrid Deep Learning Technique
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU147003" target="_blank" >RIV/00216305:26220/23:PU147003 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/23/3/1167" target="_blank" >https://www.mdpi.com/1424-8220/23/3/1167</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s23031167" target="_blank" >10.3390/s23031167</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image Noise Removal in Ultrasound Breast Images Based on Hybrid Deep Learning Technique
Popis výsledku v původním jazyce
Rapid improvements in ultrasound imaging technology have made it much more useful for screening and diagnosing breast problems. Local-speckle-noise destruction in ultrasound breast images may impair image quality and impact observation and diagnosis. It is crucial to remove localized noise from images. In the article, we have used the hybrid deep learning technique to remove local speckle noise from breast ultrasound images. The contrast of ultrasound breast images was first improved using logarithmic and exponential transforms, and then guided filter algorithms were used to enhance the details of the glandular ultrasound breast images. In order to finish the pre-processing of ultrasound breast images and enhance image clarity, spatial high-pass filtering algorithms were used to remove the extreme sharpening. In order to remove local speckle noise without sacrificing the image edges, edge-sensitive terms were eventually added to the Logical-Pool Recurrent Neural Network (LPRNN). The mean square error and false recognition rate both fell below 1.1% at the hundredth training iteration, showing that the LPRNN had been properly trained. Ultrasound images that have had local speckle noise destroyed had signal-to-noise ratios (SNRs) greater than 65 dB, peak SNR ratios larger than 70 dB, edge preservation index values greater than the experimental threshold of 0.48, and quick destruction times. The time required to destroy local speckle noise is low, edge information is preserved, and image features are brought into sharp focus.
Název v anglickém jazyce
Image Noise Removal in Ultrasound Breast Images Based on Hybrid Deep Learning Technique
Popis výsledku anglicky
Rapid improvements in ultrasound imaging technology have made it much more useful for screening and diagnosing breast problems. Local-speckle-noise destruction in ultrasound breast images may impair image quality and impact observation and diagnosis. It is crucial to remove localized noise from images. In the article, we have used the hybrid deep learning technique to remove local speckle noise from breast ultrasound images. The contrast of ultrasound breast images was first improved using logarithmic and exponential transforms, and then guided filter algorithms were used to enhance the details of the glandular ultrasound breast images. In order to finish the pre-processing of ultrasound breast images and enhance image clarity, spatial high-pass filtering algorithms were used to remove the extreme sharpening. In order to remove local speckle noise without sacrificing the image edges, edge-sensitive terms were eventually added to the Logical-Pool Recurrent Neural Network (LPRNN). The mean square error and false recognition rate both fell below 1.1% at the hundredth training iteration, showing that the LPRNN had been properly trained. Ultrasound images that have had local speckle noise destroyed had signal-to-noise ratios (SNRs) greater than 65 dB, peak SNR ratios larger than 70 dB, edge preservation index values greater than the experimental threshold of 0.48, and quick destruction times. The time required to destroy local speckle noise is low, edge information is preserved, and image features are brought into sharp focus.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SENSORS
ISSN
1424-8220
e-ISSN
1424-3210
Svazek periodika
23
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000930307600001
EID výsledku v databázi Scopus
2-s2.0-85147895425