Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hybrid Recommendation Network Model with a Synthesis of Social Matrix Factorization and Link Probability Functions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU147779" target="_blank" >RIV/00216305:26220/23:PU147779 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/1424-8220/23/5/2495" target="_blank" >https://www.mdpi.com/1424-8220/23/5/2495</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s23052495" target="_blank" >10.3390/s23052495</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hybrid Recommendation Network Model with a Synthesis of Social Matrix Factorization and Link Probability Functions

  • Popis výsledku v původním jazyce

    Recommender systems are becoming an integral part of routine life, as they are extensively used in daily decision-making processes such as online shopping for products or services, job references, matchmaking for marriage purposes, and many others. However, these recommender systems are lacking in producing quality recommendations owing to sparsity issues. Keeping this in mind, the present study introduces a hybrid recommendation model for recommending music artists to users which is hierarchical Bayesian in nature, known as Relational Collaborative Topic Regression with Social Matrix Factorization (RCTR–SMF). This model makes use of a lot of auxiliary domain knowledge and provides seamless integration of Social Matrix Factorization and Link Probability Functions into Collaborative Topic Regression-based recommender systems to attain better prediction accuracy. Here, the main emphasis is on examining the effectiveness of unified information related to social networking and an item-relational network structure in addition to item content and user-item interactions to make predictions for user ratings. RCTR–SMF addresses the sparsity problem by utilizing additional domain knowledge, and it can address the cold-start problem in the case that there is hardly any rating information available. Furthermore, this article exhibits the proposed model performance on a large real-world social media dataset. The proposed model provides a recall of 57% and demonstrates its superiority over other state-of-the-art recommendation algorithms.

  • Název v anglickém jazyce

    Hybrid Recommendation Network Model with a Synthesis of Social Matrix Factorization and Link Probability Functions

  • Popis výsledku anglicky

    Recommender systems are becoming an integral part of routine life, as they are extensively used in daily decision-making processes such as online shopping for products or services, job references, matchmaking for marriage purposes, and many others. However, these recommender systems are lacking in producing quality recommendations owing to sparsity issues. Keeping this in mind, the present study introduces a hybrid recommendation model for recommending music artists to users which is hierarchical Bayesian in nature, known as Relational Collaborative Topic Regression with Social Matrix Factorization (RCTR–SMF). This model makes use of a lot of auxiliary domain knowledge and provides seamless integration of Social Matrix Factorization and Link Probability Functions into Collaborative Topic Regression-based recommender systems to attain better prediction accuracy. Here, the main emphasis is on examining the effectiveness of unified information related to social networking and an item-relational network structure in addition to item content and user-item interactions to make predictions for user ratings. RCTR–SMF addresses the sparsity problem by utilizing additional domain knowledge, and it can address the cold-start problem in the case that there is hardly any rating information available. Furthermore, this article exhibits the proposed model performance on a large real-world social media dataset. The proposed model provides a recall of 57% and demonstrates its superiority over other state-of-the-art recommendation algorithms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SENSORS

  • ISSN

    1424-8220

  • e-ISSN

    1424-3210

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    20

  • Strana od-do

    1-20

  • Kód UT WoS článku

    000947418800001

  • EID výsledku v databázi Scopus

    2-s2.0-85149669006