Advanced Recommender Systems by Exploiting Social Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F19%3A00112116" target="_blank" >RIV/00216224:14330/19:00112116 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/HCC46620.2019.00025" target="_blank" >http://dx.doi.org/10.1109/HCC46620.2019.00025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/HCC46620.2019.00025" target="_blank" >10.1109/HCC46620.2019.00025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced Recommender Systems by Exploiting Social Networks
Popis výsledku v původním jazyce
Social networks have become an indispensable part of our lives, which serve as communication channels, social interaction platforms as well as ubiquitous entertainment tools; meanwhile, social networks constantly generate big social media data that create decision complexity and information overload to users. As a result, recommender systems are emerged to suggest personalized and possibly preferred media for the users. However, social networks have extensively enriched the inputs for recommender systems, such as users' social relations, data source credibility, and new social media types. Consequently, this paper is aimed at identifying the crucial factors that can be used to advance recommender systems in social networks. For each factor, this paper discusses the state-of-the-art recommender system research in that aspect, and suggests how to integrate the featured data to build and improve recommender systems for social networks. The paper further proposes a model to integrate the crucial factors and indicates possible application domains for social media recommender systems.
Název v anglickém jazyce
Advanced Recommender Systems by Exploiting Social Networks
Popis výsledku anglicky
Social networks have become an indispensable part of our lives, which serve as communication channels, social interaction platforms as well as ubiquitous entertainment tools; meanwhile, social networks constantly generate big social media data that create decision complexity and information overload to users. As a result, recommender systems are emerged to suggest personalized and possibly preferred media for the users. However, social networks have extensively enriched the inputs for recommender systems, such as users' social relations, data source credibility, and new social media types. Consequently, this paper is aimed at identifying the crucial factors that can be used to advance recommender systems in social networks. For each factor, this paper discusses the state-of-the-art recommender system research in that aspect, and suggests how to integrate the featured data to build and improve recommender systems for social networks. The paper further proposes a model to integrate the crucial factors and indicates possible application domains for social media recommender systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the IEEE International Conference on Humanized Computing and Communication
ISBN
9781728141251
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
118-125
Název nakladatele
IEEE
Místo vydání
Laguna Hills, CA, USA
Místo konání akce
Laguna Hills, CA, USA
Datum konání akce
1. 1. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000525609700017