Optimal approximation of analog PID controllers of complex fractional-order
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148148" target="_blank" >RIV/00216305:26220/23:PU148148 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s13540-023-00168-x" target="_blank" >https://link.springer.com/article/10.1007/s13540-023-00168-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13540-023-00168-x" target="_blank" >10.1007/s13540-023-00168-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal approximation of analog PID controllers of complex fractional-order
Popis výsledku v původním jazyce
Complex fractional-order (CFO) transfer functions, being more generalized versions of their real-order counterparts, lend greater flexibility to system modeling. Due to the absence of commercial complex-order fractance elements, the implementation of CFO models is challenging. To alleviate this issue, a constrained optimization approach that meets the targeted frequency responses is proposed for the rational approximation of CFO systems. The technique generates stable, {minimum-phase, and real-valued coefficients based approximants}, which are not always feasible for the curve-fitting approach reported in the literature. {Stability and performance studies of the CFO proportional-integral-derivative (CFOPID) controllers for the Podlubny's, the internal model control, and the El-Khazali's forms are considered to demonstrate the feasibility of the proposed technique}. Simulation results highlight that, for a practically reasonable order, all the designs achieve good agreement with the theoretical characteristics. {Performance comparisons with the CFOPID controller approximants determined by the Oustaloup's CFO differentiator based substitution method justify the proposed approach.
Název v anglickém jazyce
Optimal approximation of analog PID controllers of complex fractional-order
Popis výsledku anglicky
Complex fractional-order (CFO) transfer functions, being more generalized versions of their real-order counterparts, lend greater flexibility to system modeling. Due to the absence of commercial complex-order fractance elements, the implementation of CFO models is challenging. To alleviate this issue, a constrained optimization approach that meets the targeted frequency responses is proposed for the rational approximation of CFO systems. The technique generates stable, {minimum-phase, and real-valued coefficients based approximants}, which are not always feasible for the curve-fitting approach reported in the literature. {Stability and performance studies of the CFO proportional-integral-derivative (CFOPID) controllers for the Podlubny's, the internal model control, and the El-Khazali's forms are considered to demonstrate the feasibility of the proposed technique}. Simulation results highlight that, for a practically reasonable order, all the designs achieve good agreement with the theoretical characteristics. {Performance comparisons with the CFOPID controller approximants determined by the Oustaloup's CFO differentiator based substitution method justify the proposed approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fractional Calculus and Applied Analysis
ISSN
1311-0454
e-ISSN
1314-2224
Svazek periodika
26
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
BG - Bulharská republika
Počet stran výsledku
28
Strana od-do
1566-1593
Kód UT WoS článku
001033237600001
EID výsledku v databázi Scopus
2-s2.0-85160589306