Multi-Branch Multi Layer Perceptron: A Solution for Precise Regression using Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148281" target="_blank" >RIV/00216305:26220/23:PU148281 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10109076" target="_blank" >https://ieeexplore.ieee.org/document/10109076</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA57919.2023.10109076" target="_blank" >10.1109/RADIOELEKTRONIKA57919.2023.10109076</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-Branch Multi Layer Perceptron: A Solution for Precise Regression using Machine Learning
Popis výsledku v původním jazyce
The problem of simple regression using Multi Layer Perceptron (MLP) has its limitations. The main problem with MLP is that it is difficult to find a perfect architecture to fit all the data. The more complex and multi-dimensional the data we use, the deeper the network has to be, which increases training time as well as optimization and tuning of the network. The solution to fit the data more precisely could be to split the data into groups based on the input variable and use a different model to train and predict data for each of these groups. In most cases, datasets contain a large number of non-linear input features, which makes the method for finding thresholds for each group very difficult. The proposed technique tackles this problem using multiple branches consisting of shallow MLP, one of which acts as a selector (classifier) for the output. The selector's main goal is to generate a weight for the other prediction branches which in other words means, results in one branch being more proficient in predicting certain parts of the feature space while the other branches will be better at predicting completely different parts of the feature space.
Název v anglickém jazyce
Multi-Branch Multi Layer Perceptron: A Solution for Precise Regression using Machine Learning
Popis výsledku anglicky
The problem of simple regression using Multi Layer Perceptron (MLP) has its limitations. The main problem with MLP is that it is difficult to find a perfect architecture to fit all the data. The more complex and multi-dimensional the data we use, the deeper the network has to be, which increases training time as well as optimization and tuning of the network. The solution to fit the data more precisely could be to split the data into groups based on the input variable and use a different model to train and predict data for each of these groups. In most cases, datasets contain a large number of non-linear input features, which makes the method for finding thresholds for each group very difficult. The proposed technique tackles this problem using multiple branches consisting of shallow MLP, one of which acts as a selector (classifier) for the output. The selector's main goal is to generate a weight for the other prediction branches which in other words means, results in one branch being more proficient in predicting certain parts of the feature space while the other branches will be better at predicting completely different parts of the feature space.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
RADIOELEKTRONIKA 2023: 2023 33rd International Conference Radioelektronika
ISBN
979-8-3503-9834-2
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
„“-„“
Název nakladatele
IEEE
Místo vydání
NEW YORK
Místo konání akce
Pardubice
Datum konání akce
19. 4. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000990505700049