Intonation Based Sentence Modality Classifier for Czech Using Artificial Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00183476" target="_blank" >RIV/68407700:21230/11:00183476 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intonation Based Sentence Modality Classifier for Czech Using Artificial Neural Network
Popis výsledku v původním jazyce
This paper presents an idea and first results of sentence modality classifier for Czech based purely on intonational information. This is in contrast with other studies which usually use more features (including lexical features) for this type of classification. As the sentence melody (intonation) is the most important feature, all the experiments were done on an annotated sample of Czech audiobooks library recorded by Czech leading actors. A non-linear model implemented by artificial neural network (ANN) was chosen for the classification. Two types of ANN are considered in this work in terms of temporal pattern classifications - classical multi-layer perceptron (MLP) network and Elman's network, results for MLP are presented. Pre-processing of temporal intonational patterns for use as ANN inputs is discussed. Results show that questions are very often misclassified as statements and exclamation marks are not detectable in current data set.
Název v anglickém jazyce
Intonation Based Sentence Modality Classifier for Czech Using Artificial Neural Network
Popis výsledku anglicky
This paper presents an idea and first results of sentence modality classifier for Czech based purely on intonational information. This is in contrast with other studies which usually use more features (including lexical features) for this type of classification. As the sentence melody (intonation) is the most important feature, all the experiments were done on an annotated sample of Czech audiobooks library recorded by Czech leading actors. A non-linear model implemented by artificial neural network (ANN) was chosen for the classification. Two types of ANN are considered in this work in terms of temporal pattern classifications - classical multi-layer perceptron (MLP) network and Elman's network, results for MLP are presented. Pre-processing of temporal intonational patterns for use as ANN inputs is discussed. Results show that questions are very often misclassified as statements and exclamation marks are not detectable in current data set.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Nonlinear Speech Processing
ISBN
978-3-642-25019-4
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
162-169
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Las Palmas de Gran Canaria
Datum konání akce
7. 11. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—