Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Robust Neural Network-Based Estimation of Articulatory Features for Czech

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00221424" target="_blank" >RIV/68407700:21230/14:00221424 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://nnw.cz/obsahy14.html#5-2014" target="_blank" >http://nnw.cz/obsahy14.html#5-2014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/NNW.2014.24.027" target="_blank" >10.14311/NNW.2014.24.027</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Robust Neural Network-Based Estimation of Articulatory Features for Czech

  • Popis výsledku v původním jazyce

    The article describes a neural network-based articulatory feature (AF) estimation for the Czech speech. First, the relationship between AFs and a Czech phone inventory is defined, and then the estimation based on the MLP neural networks is done. The usage of several speech representations on the input of the MLP classifiers is proposed with the purpose to obtain a robust AF estimation. The realized experiments have proved that an ANN- based AF estimation works very reliably especially in a low noise environment. Moreover, in case the number of neurons in a hidden layer is increased and if the temporal context DCT-TRAP features are used on the input of the MLP network, the AF classification works accurately also for the signals collected in the environments with a high background noise.

  • Název v anglickém jazyce

    Robust Neural Network-Based Estimation of Articulatory Features for Czech

  • Popis výsledku anglicky

    The article describes a neural network-based articulatory feature (AF) estimation for the Czech speech. First, the relationship between AFs and a Czech phone inventory is defined, and then the estimation based on the MLP neural networks is done. The usage of several speech representations on the input of the MLP classifiers is proposed with the purpose to obtain a robust AF estimation. The realized experiments have proved that an ANN- based AF estimation works very reliably especially in a low noise environment. Moreover, in case the number of neurons in a hidden layer is increased and if the temporal context DCT-TRAP features are used on the input of the MLP network, the AF classification works accurately also for the signals collected in the environments with a high background noise.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    16

  • Strana od-do

    463-478

  • Kód UT WoS článku

    000344832300003

  • EID výsledku v databázi Scopus