Predicting the Optimum Corn Harvest Time via the Quantity of Dry Matter Determined with Vegetation Indices Obtained from Multispectral Field Imaging
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148495" target="_blank" >RIV/00216305:26220/23:PU148495 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/15/12/3152" target="_blank" >https://www.mdpi.com/2072-4292/15/12/3152</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs15123152" target="_blank" >10.3390/rs15123152</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting the Optimum Corn Harvest Time via the Quantity of Dry Matter Determined with Vegetation Indices Obtained from Multispectral Field Imaging
Popis výsledku v původním jazyce
Estimating the optimum harvest time and yield embodies an essential food security factor. Vegetation indices have proven to be an effective tool for widescale in-field plant health mapping. A drone-based multispectral camera then conveniently allows acquiring data on the condition of the plant. This article examines and discusses the relationships between vegetation indices and nutritiolnal values that have been determined via chemical analysis of plant samples collected in the field. In this context, emphasis is placed on the normalized difference red edge index (NDRE), normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), and nutritional values, such as those of dry matter. The relationships between the variables were correlated and described by means of regression models. This produced equations that are applicable for estimating the quantity of dry matter and thus determining the optimum corn harvest time. The obtained equations were validated on five different types of corn hybrids in fields within the South Moravian Region, Moravia, the Czech Republic.
Název v anglickém jazyce
Predicting the Optimum Corn Harvest Time via the Quantity of Dry Matter Determined with Vegetation Indices Obtained from Multispectral Field Imaging
Popis výsledku anglicky
Estimating the optimum harvest time and yield embodies an essential food security factor. Vegetation indices have proven to be an effective tool for widescale in-field plant health mapping. A drone-based multispectral camera then conveniently allows acquiring data on the condition of the plant. This article examines and discusses the relationships between vegetation indices and nutritiolnal values that have been determined via chemical analysis of plant samples collected in the field. In this context, emphasis is placed on the normalized difference red edge index (NDRE), normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), and nutritional values, such as those of dry matter. The relationships between the variables were correlated and described by means of regression models. This produced equations that are applicable for estimating the quantity of dry matter and thus determining the optimum corn harvest time. The obtained equations were validated on five different types of corn hybrids in fields within the South Moravian Region, Moravia, the Czech Republic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
001018332300001
EID výsledku v databázi Scopus
2-s2.0-85164202651