Using UAV-Based Photogrammetry to Obtain Correlation between the Vegetation Indices and Chemical Analysis of Agricultural Crops
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140808" target="_blank" >RIV/00216305:26220/21:PU140808 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2072-4292/13/10/1878" target="_blank" >https://www.mdpi.com/2072-4292/13/10/1878</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs13101878" target="_blank" >10.3390/rs13101878</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using UAV-Based Photogrammetry to Obtain Correlation between the Vegetation Indices and Chemical Analysis of Agricultural Crops
Popis výsledku v původním jazyce
The optimum corn harvest time differs between individual harvest scenarios, depending on the intended use of the crop and on the technical equipment of the actual farm. It is therefore economically significant to specify the period as precisely as possible. The harvest maturity of silage corn is currently determined from the targeted sampling of plants cultivated over large areas. In this context, the paper presents an alternative, more detail-oriented approach for estimating the correct harvest time; the method focuses on the relationship between the ripeness data obtained via photogrammetry and the parameters produced by the chemical analysis of corn. The relevant imaging methodology utilizing a spectral camera-equipped unmanned aerial vehicle (UAV) allows the user to acquire the spectral reflectance values and to compute the vegetation indices. Furthermore, the authors discuss the statistical data analysis centered on both the nutritional values found in the laboratory corn samples and on the information obtained from the multispectral images. This discussion is associated with a detailed insight into the computation of correlation coefficients. Statistically significant linear relationships between the vegetation indices, the normalized difference red edge index (NDRE) and the normalized difference vegetation index (NDVI) in particular, and nutritional values such as dry matter, starch, and crude protein are evaluated to indicate different aspects of and paths toward predicting the optimum harvest time. The results are discussed in terms of the actual limitations of the method, the benefits for agricultural practice, and planned research.
Název v anglickém jazyce
Using UAV-Based Photogrammetry to Obtain Correlation between the Vegetation Indices and Chemical Analysis of Agricultural Crops
Popis výsledku anglicky
The optimum corn harvest time differs between individual harvest scenarios, depending on the intended use of the crop and on the technical equipment of the actual farm. It is therefore economically significant to specify the period as precisely as possible. The harvest maturity of silage corn is currently determined from the targeted sampling of plants cultivated over large areas. In this context, the paper presents an alternative, more detail-oriented approach for estimating the correct harvest time; the method focuses on the relationship between the ripeness data obtained via photogrammetry and the parameters produced by the chemical analysis of corn. The relevant imaging methodology utilizing a spectral camera-equipped unmanned aerial vehicle (UAV) allows the user to acquire the spectral reflectance values and to compute the vegetation indices. Furthermore, the authors discuss the statistical data analysis centered on both the nutritional values found in the laboratory corn samples and on the information obtained from the multispectral images. This discussion is associated with a detailed insight into the computation of correlation coefficients. Statistically significant linear relationships between the vegetation indices, the normalized difference red edge index (NDRE) and the normalized difference vegetation index (NDVI) in particular, and nutritional values such as dry matter, starch, and crude protein are evaluated to indicate different aspects of and paths toward predicting the optimum harvest time. The results are discussed in terms of the actual limitations of the method, the benefits for agricultural practice, and planned research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
1-20
Kód UT WoS článku
000662694600001
EID výsledku v databázi Scopus
2-s2.0-85106500641