Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ADEROS: Artificial Intelligence-Based Detection System of Critical Events for Road Security

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148549" target="_blank" >RIV/00216305:26220/23:PU148549 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10147025" target="_blank" >https://ieeexplore.ieee.org/document/10147025</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JSYST.2023.3276644" target="_blank" >10.1109/JSYST.2023.3276644</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ADEROS: Artificial Intelligence-Based Detection System of Critical Events for Road Security

  • Popis výsledku v původním jazyce

    The deployment of artificial intelligence (AI) in Intelligent Transportation Systems (ITS), especially in the field of Intelligent Transportation Cyber-Physical Systems (ITCPS) has a strong potential to achieve higher efficiency, reliability, and increased safety in both transportation and traffic. This work focuses on the real-world implementation of ITCPS, in which structure and elements in combination with advanced image processing methods increase safety and fluidity of road traffic at crossroads and railway crossings. In this work, we present a novel system called Artificial Intelligence-based Detection System for Road Security (ADEROS), which combines elements of CPS systems, object detection, and classification, computer vision (CV) which analyzes vehicle trajectory tracking, vehicle and pedestrian presence, light signaling systems, railway barriers at railway crossings, and railway warnings. The presented system is based on a camera module that is suitably positioned to capture the entire scene. The module uses graphics processing units (GPU) for accelerated image processing techniques and the YOLOv4 deep neural network model to detect traffic participants and then dangerous situations in various crossroads and railway crossings. Our improved unique detector can distinguish between individual types of road users and the status of several safety devices at crossroads and railway crossings (for example, the state of traffic lights (TL) or rail barriers). Furthermore, we present experimental implementation details of the ADEROS system, which includes a central server web interface for live traffic situation monitoring, various communication channels for the camera module, and a central server based on.NET core, Cassandra DB, and different security protocols. All data from risky situations are evaluated and transferred to the central server securely without human intervention. The central server aggregates and archives all risky situational data from connected c

  • Název v anglickém jazyce

    ADEROS: Artificial Intelligence-Based Detection System of Critical Events for Road Security

  • Popis výsledku anglicky

    The deployment of artificial intelligence (AI) in Intelligent Transportation Systems (ITS), especially in the field of Intelligent Transportation Cyber-Physical Systems (ITCPS) has a strong potential to achieve higher efficiency, reliability, and increased safety in both transportation and traffic. This work focuses on the real-world implementation of ITCPS, in which structure and elements in combination with advanced image processing methods increase safety and fluidity of road traffic at crossroads and railway crossings. In this work, we present a novel system called Artificial Intelligence-based Detection System for Road Security (ADEROS), which combines elements of CPS systems, object detection, and classification, computer vision (CV) which analyzes vehicle trajectory tracking, vehicle and pedestrian presence, light signaling systems, railway barriers at railway crossings, and railway warnings. The presented system is based on a camera module that is suitably positioned to capture the entire scene. The module uses graphics processing units (GPU) for accelerated image processing techniques and the YOLOv4 deep neural network model to detect traffic participants and then dangerous situations in various crossroads and railway crossings. Our improved unique detector can distinguish between individual types of road users and the status of several safety devices at crossroads and railway crossings (for example, the state of traffic lights (TL) or rail barriers). Furthermore, we present experimental implementation details of the ADEROS system, which includes a central server web interface for live traffic situation monitoring, various communication channels for the camera module, and a central server based on.NET core, Cassandra DB, and different security protocols. All data from risky situations are evaluated and transferred to the central server securely without human intervention. The central server aggregates and archives all risky situational data from connected c

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/CK04000027" target="_blank" >CK04000027: Systém řízENí Dopravy nové gEneRace (SENDER)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Systems Journal

  • ISSN

    1932-8184

  • e-ISSN

    1937-9234

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    2023

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    1-12

  • Kód UT WoS článku

    001012428400001

  • EID výsledku v databázi Scopus

    2-s2.0-85162702252