ADEROS: Artificial Intelligence-Based Detection System of Critical Events for Road Security
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148549" target="_blank" >RIV/00216305:26220/23:PU148549 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10147025" target="_blank" >https://ieeexplore.ieee.org/document/10147025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JSYST.2023.3276644" target="_blank" >10.1109/JSYST.2023.3276644</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ADEROS: Artificial Intelligence-Based Detection System of Critical Events for Road Security
Popis výsledku v původním jazyce
The deployment of artificial intelligence (AI) in Intelligent Transportation Systems (ITS), especially in the field of Intelligent Transportation Cyber-Physical Systems (ITCPS) has a strong potential to achieve higher efficiency, reliability, and increased safety in both transportation and traffic. This work focuses on the real-world implementation of ITCPS, in which structure and elements in combination with advanced image processing methods increase safety and fluidity of road traffic at crossroads and railway crossings. In this work, we present a novel system called Artificial Intelligence-based Detection System for Road Security (ADEROS), which combines elements of CPS systems, object detection, and classification, computer vision (CV) which analyzes vehicle trajectory tracking, vehicle and pedestrian presence, light signaling systems, railway barriers at railway crossings, and railway warnings. The presented system is based on a camera module that is suitably positioned to capture the entire scene. The module uses graphics processing units (GPU) for accelerated image processing techniques and the YOLOv4 deep neural network model to detect traffic participants and then dangerous situations in various crossroads and railway crossings. Our improved unique detector can distinguish between individual types of road users and the status of several safety devices at crossroads and railway crossings (for example, the state of traffic lights (TL) or rail barriers). Furthermore, we present experimental implementation details of the ADEROS system, which includes a central server web interface for live traffic situation monitoring, various communication channels for the camera module, and a central server based on.NET core, Cassandra DB, and different security protocols. All data from risky situations are evaluated and transferred to the central server securely without human intervention. The central server aggregates and archives all risky situational data from connected c
Název v anglickém jazyce
ADEROS: Artificial Intelligence-Based Detection System of Critical Events for Road Security
Popis výsledku anglicky
The deployment of artificial intelligence (AI) in Intelligent Transportation Systems (ITS), especially in the field of Intelligent Transportation Cyber-Physical Systems (ITCPS) has a strong potential to achieve higher efficiency, reliability, and increased safety in both transportation and traffic. This work focuses on the real-world implementation of ITCPS, in which structure and elements in combination with advanced image processing methods increase safety and fluidity of road traffic at crossroads and railway crossings. In this work, we present a novel system called Artificial Intelligence-based Detection System for Road Security (ADEROS), which combines elements of CPS systems, object detection, and classification, computer vision (CV) which analyzes vehicle trajectory tracking, vehicle and pedestrian presence, light signaling systems, railway barriers at railway crossings, and railway warnings. The presented system is based on a camera module that is suitably positioned to capture the entire scene. The module uses graphics processing units (GPU) for accelerated image processing techniques and the YOLOv4 deep neural network model to detect traffic participants and then dangerous situations in various crossroads and railway crossings. Our improved unique detector can distinguish between individual types of road users and the status of several safety devices at crossroads and railway crossings (for example, the state of traffic lights (TL) or rail barriers). Furthermore, we present experimental implementation details of the ADEROS system, which includes a central server web interface for live traffic situation monitoring, various communication channels for the camera module, and a central server based on.NET core, Cassandra DB, and different security protocols. All data from risky situations are evaluated and transferred to the central server securely without human intervention. The central server aggregates and archives all risky situational data from connected c
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/CK04000027" target="_blank" >CK04000027: Systém řízENí Dopravy nové gEneRace (SENDER)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Systems Journal
ISSN
1932-8184
e-ISSN
1937-9234
Svazek periodika
neuveden
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
001012428400001
EID výsledku v databázi Scopus
2-s2.0-85162702252