Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Artificial Intelligence-based Surveillance System for Railway Crossing Traffic

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137506" target="_blank" >RIV/00216305:26220/20:PU137506 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9226453" target="_blank" >https://ieeexplore.ieee.org/document/9226453</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JSEN.2020.3031861" target="_blank" >10.1109/JSEN.2020.3031861</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Artificial Intelligence-based Surveillance System for Railway Crossing Traffic

  • Popis výsledku v původním jazyce

    The application of Artificial Intelligence (AI) based techniques has strong potential to improve safety and efficiency in data-driven Intelligent Transportation Systems (ITS) as well as in the emerging Internet of Vehicles (IoV) services. This paper deals with the practical implementation of deep learning methods for increasing safety and security in a specific ITS scenario: railway crossings. This research work presents our proposed system called Artificial Intelligence-based Surveillance System for Railway Crossing Traffic (AISS4RCT) that is based on a combination of detection and classification methods focusing on various image processing inputs: vehicle presence, pedestrian presence, vehicle trajectory tracking, railway barriers at railway crossings, railway warnings, and light signaling systems. The designed system uses cameras that are suitably positioned to capture an entire crossing area at a given railway crossing. By employing GPU accelerated image processing techniques and deep neural networks, the system autonomously detects risky and dangerous situations at railway crossing in real-time. In addition, camera modules send data to a central server for further processing as well as notification to interested parties (police, emergency services, railway operators). Furthermore, the system architecture employs privacy-by-design and security-by-design best practices in order to secure all communication interfaces, protect personal data, and to increase personal privacy, i.e., pedestrians, drivers. Finally, we present field-based results of detection methods, and using the YOLO tiny model method we achieve average recall 89%. The results indicate that our system is efficient for evaluating the occurrence of objects and situations, and it’s practicality for use in railway crossings.

  • Název v anglickém jazyce

    Artificial Intelligence-based Surveillance System for Railway Crossing Traffic

  • Popis výsledku anglicky

    The application of Artificial Intelligence (AI) based techniques has strong potential to improve safety and efficiency in data-driven Intelligent Transportation Systems (ITS) as well as in the emerging Internet of Vehicles (IoV) services. This paper deals with the practical implementation of deep learning methods for increasing safety and security in a specific ITS scenario: railway crossings. This research work presents our proposed system called Artificial Intelligence-based Surveillance System for Railway Crossing Traffic (AISS4RCT) that is based on a combination of detection and classification methods focusing on various image processing inputs: vehicle presence, pedestrian presence, vehicle trajectory tracking, railway barriers at railway crossings, railway warnings, and light signaling systems. The designed system uses cameras that are suitably positioned to capture an entire crossing area at a given railway crossing. By employing GPU accelerated image processing techniques and deep neural networks, the system autonomously detects risky and dangerous situations at railway crossing in real-time. In addition, camera modules send data to a central server for further processing as well as notification to interested parties (police, emergency services, railway operators). Furthermore, the system architecture employs privacy-by-design and security-by-design best practices in order to secure all communication interfaces, protect personal data, and to increase personal privacy, i.e., pedestrians, drivers. Finally, we present field-based results of detection methods, and using the YOLO tiny model method we achieve average recall 89%. The results indicate that our system is efficient for evaluating the occurrence of objects and situations, and it’s practicality for use in railway crossings.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FV40372" target="_blank" >FV40372: Autonomní systém pro detekci rizikových situací v dopravě založený na analýze obrazových sekvencí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE SENSORS JOURNAL

  • ISSN

    1530-437X

  • e-ISSN

    1558-1748

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    2020

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    15515-15526

  • Kód UT WoS článku

    000673632700099

  • EID výsledku v databázi Scopus