Artificial Intelligence-based Surveillance System for Railway Crossing Traffic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137506" target="_blank" >RIV/00216305:26220/20:PU137506 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9226453" target="_blank" >https://ieeexplore.ieee.org/document/9226453</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JSEN.2020.3031861" target="_blank" >10.1109/JSEN.2020.3031861</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Intelligence-based Surveillance System for Railway Crossing Traffic
Popis výsledku v původním jazyce
The application of Artificial Intelligence (AI) based techniques has strong potential to improve safety and efficiency in data-driven Intelligent Transportation Systems (ITS) as well as in the emerging Internet of Vehicles (IoV) services. This paper deals with the practical implementation of deep learning methods for increasing safety and security in a specific ITS scenario: railway crossings. This research work presents our proposed system called Artificial Intelligence-based Surveillance System for Railway Crossing Traffic (AISS4RCT) that is based on a combination of detection and classification methods focusing on various image processing inputs: vehicle presence, pedestrian presence, vehicle trajectory tracking, railway barriers at railway crossings, railway warnings, and light signaling systems. The designed system uses cameras that are suitably positioned to capture an entire crossing area at a given railway crossing. By employing GPU accelerated image processing techniques and deep neural networks, the system autonomously detects risky and dangerous situations at railway crossing in real-time. In addition, camera modules send data to a central server for further processing as well as notification to interested parties (police, emergency services, railway operators). Furthermore, the system architecture employs privacy-by-design and security-by-design best practices in order to secure all communication interfaces, protect personal data, and to increase personal privacy, i.e., pedestrians, drivers. Finally, we present field-based results of detection methods, and using the YOLO tiny model method we achieve average recall 89%. The results indicate that our system is efficient for evaluating the occurrence of objects and situations, and it’s practicality for use in railway crossings.
Název v anglickém jazyce
Artificial Intelligence-based Surveillance System for Railway Crossing Traffic
Popis výsledku anglicky
The application of Artificial Intelligence (AI) based techniques has strong potential to improve safety and efficiency in data-driven Intelligent Transportation Systems (ITS) as well as in the emerging Internet of Vehicles (IoV) services. This paper deals with the practical implementation of deep learning methods for increasing safety and security in a specific ITS scenario: railway crossings. This research work presents our proposed system called Artificial Intelligence-based Surveillance System for Railway Crossing Traffic (AISS4RCT) that is based on a combination of detection and classification methods focusing on various image processing inputs: vehicle presence, pedestrian presence, vehicle trajectory tracking, railway barriers at railway crossings, railway warnings, and light signaling systems. The designed system uses cameras that are suitably positioned to capture an entire crossing area at a given railway crossing. By employing GPU accelerated image processing techniques and deep neural networks, the system autonomously detects risky and dangerous situations at railway crossing in real-time. In addition, camera modules send data to a central server for further processing as well as notification to interested parties (police, emergency services, railway operators). Furthermore, the system architecture employs privacy-by-design and security-by-design best practices in order to secure all communication interfaces, protect personal data, and to increase personal privacy, i.e., pedestrians, drivers. Finally, we present field-based results of detection methods, and using the YOLO tiny model method we achieve average recall 89%. The results indicate that our system is efficient for evaluating the occurrence of objects and situations, and it’s practicality for use in railway crossings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/FV40372" target="_blank" >FV40372: Autonomní systém pro detekci rizikových situací v dopravě založený na analýze obrazových sekvencí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE SENSORS JOURNAL
ISSN
1530-437X
e-ISSN
1558-1748
Svazek periodika
neuveden
Číslo periodika v rámci svazku
2020
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
15515-15526
Kód UT WoS článku
000673632700099
EID výsledku v databázi Scopus
—