Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Homomorphic federated learning schemes enabled pedestrian and vehicle detection system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252901" target="_blank" >RIV/61989100:27240/23:10252901 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2542660523002263" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2542660523002263</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.iot.2023.100903" target="_blank" >10.1016/j.iot.2023.100903</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Homomorphic federated learning schemes enabled pedestrian and vehicle detection system

  • Popis výsledku v původním jazyce

    Intelligent transport systems are increasingly being used in practice these days. Fog nodes and cloud servers collect real-time pedestrian and vehicle data and train them based on machine learning models. Existing pedestrian and vehicle detection systems need more security, less resource leakage, and faster processing. This paper proposes a homomorphic, secure, federated learning-enabled pedestrian detection system named HMFLS. The HMFLS consists of base stations (BS) and homogeneous (homo) federated learning servers with weights, surveillance, and traffic light components, and these nodes serve as data generation and processing sources. Homomorphic encryption is a cryptographic technique that allows computations on encrypted data without decryption. In other words, it enables computations on encrypted data while preserving the privacy and confidentiality of the information. The HMFLS exploits Generative Adversarial Networks to train pedestrian and vehicle images and extract features based on VGG19 from fog nodes and surveillance sensor images. We trained the different tasks and weights based on the model&apos;s 28,000 pedestrian and vehicle images. The goal is to identify pedestrians and vehicles in the system. The interface is based on an Android-based application that can be easily integrated into different vehicles and mobile phones. Simulation results demonstrated that HMFL performed well as compared to existing schemes (e.g., PEL, TFL-CNN, FLAV) in terms of security accuracy by 98%, resource leakage by 50%, and processing time by 52% for vehicle and pedestrian detection in the system. (C) 2023 Elsevier B.V.

  • Název v anglickém jazyce

    Homomorphic federated learning schemes enabled pedestrian and vehicle detection system

  • Popis výsledku anglicky

    Intelligent transport systems are increasingly being used in practice these days. Fog nodes and cloud servers collect real-time pedestrian and vehicle data and train them based on machine learning models. Existing pedestrian and vehicle detection systems need more security, less resource leakage, and faster processing. This paper proposes a homomorphic, secure, federated learning-enabled pedestrian detection system named HMFLS. The HMFLS consists of base stations (BS) and homogeneous (homo) federated learning servers with weights, surveillance, and traffic light components, and these nodes serve as data generation and processing sources. Homomorphic encryption is a cryptographic technique that allows computations on encrypted data without decryption. In other words, it enables computations on encrypted data while preserving the privacy and confidentiality of the information. The HMFLS exploits Generative Adversarial Networks to train pedestrian and vehicle images and extract features based on VGG19 from fog nodes and surveillance sensor images. We trained the different tasks and weights based on the model&apos;s 28,000 pedestrian and vehicle images. The goal is to identify pedestrians and vehicles in the system. The interface is based on an Android-based application that can be easily integrated into different vehicles and mobile phones. Simulation results demonstrated that HMFL performed well as compared to existing schemes (e.g., PEL, TFL-CNN, FLAV) in terms of security accuracy by 98%, resource leakage by 50%, and processing time by 52% for vehicle and pedestrian detection in the system. (C) 2023 Elsevier B.V.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Internet of Things

  • ISSN

    2543-1536

  • e-ISSN

    2542-6605

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    001061408000001

  • EID výsledku v databázi Scopus

    2-s2.0-85168584116