Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-objectives reinforcement federated learning blockchain enabled Internet of things and Fog-Cloud infrastructure for transport data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253420" target="_blank" >RIV/61989100:27240/23:10253420 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2405844023088473" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844023088473</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2023.e21639" target="_blank" >10.1016/j.heliyon.2023.e21639</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-objectives reinforcement federated learning blockchain enabled Internet of things and Fog-Cloud infrastructure for transport data

  • Popis výsledku v původním jazyce

    For the past decade, there has been a significant increase in customer usage of public transport applications in smart cities. These applications rely on various services, such as communication and computation, provided by additional nodes within the smart city environment. However, these services are delivered by a diverse range of cloud computing-based servers that are widely spread and heterogeneous, leading to cybersecurity becoming a crucial challenge among these servers. Numerous machine-learning approaches have been proposed in the literature to address the cybersecurity challenges in heterogeneous transport applications within smart cities. However, the centralized security and scheduling strategies suggested so far have yet to produce optimal results for transport applications. This work aims to present a secure decentralized infrastructure for transporting data in fog cloud networks. This paper introduces Multi-Objectives Reinforcement Federated Learning Blockchain (MORFLB) for Transport Infrastructure. MORFLB aims to minimize processing and transfer delays while maximizing long-term rewards by identifying known and unknown attacks on remote sensing data in-vehicle applications. MORFLB incorporates multi-agent policies, proof-of-work hashing validation, and decentralized deep neural network training to achieve minimal processing and transfer delays. It comprises vehicle applications, decentralized fog, and cloud nodes based on blockchain reinforcement federated learning, which improves rewards through trial and error. The study formulates a combinatorial problem that minimizes and maximizes various factors for vehicle applications. The experimental results demonstrate that MORFLB effectively reduces processing and transfer delays while maximizing rewards compared to existing studies. It provides a promising solution to address the cybersecurity challenges in intelligent transport applications within smart cities. In conclusion, this paper presents MORFLB, a combination of different schemes that ensure the execution of transport data under their constraints and achieve optimal results with the suggested decentralized infrastructure based on blockchain technology. (C) 2023 The Authors

  • Název v anglickém jazyce

    Multi-objectives reinforcement federated learning blockchain enabled Internet of things and Fog-Cloud infrastructure for transport data

  • Popis výsledku anglicky

    For the past decade, there has been a significant increase in customer usage of public transport applications in smart cities. These applications rely on various services, such as communication and computation, provided by additional nodes within the smart city environment. However, these services are delivered by a diverse range of cloud computing-based servers that are widely spread and heterogeneous, leading to cybersecurity becoming a crucial challenge among these servers. Numerous machine-learning approaches have been proposed in the literature to address the cybersecurity challenges in heterogeneous transport applications within smart cities. However, the centralized security and scheduling strategies suggested so far have yet to produce optimal results for transport applications. This work aims to present a secure decentralized infrastructure for transporting data in fog cloud networks. This paper introduces Multi-Objectives Reinforcement Federated Learning Blockchain (MORFLB) for Transport Infrastructure. MORFLB aims to minimize processing and transfer delays while maximizing long-term rewards by identifying known and unknown attacks on remote sensing data in-vehicle applications. MORFLB incorporates multi-agent policies, proof-of-work hashing validation, and decentralized deep neural network training to achieve minimal processing and transfer delays. It comprises vehicle applications, decentralized fog, and cloud nodes based on blockchain reinforcement federated learning, which improves rewards through trial and error. The study formulates a combinatorial problem that minimizes and maximizes various factors for vehicle applications. The experimental results demonstrate that MORFLB effectively reduces processing and transfer delays while maximizing rewards compared to existing studies. It provides a promising solution to address the cybersecurity challenges in intelligent transport applications within smart cities. In conclusion, this paper presents MORFLB, a combination of different schemes that ensure the execution of transport data under their constraints and achieve optimal results with the suggested decentralized infrastructure based on blockchain technology. (C) 2023 The Authors

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    001109754200001

  • EID výsledku v databázi Scopus

    2-s2.0-85175705934