Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019539" target="_blank" >RIV/62690094:18470/22:50019539 - isvavai.cz</a>
Výsledek na webu
<a href="https://peerj.com/articles/cs-1040/" target="_blank" >https://peerj.com/articles/cs-1040/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj-cs.1040" target="_blank" >10.7717/peerj-cs.1040</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection
Popis výsledku v původním jazyce
In the recent research era, artificial intelligence techniques have been used for computer vision, big data analysis, and detection systems. The development of these advanced technologies has also increased security and privacy issues. One kind of this issue is Deepfakes which is the combined word of deep learning and fake. DeepFake refers to the formation of a fake image or video using artificial intelligence approaches which are created for political abuse, fake data transfer, and pornography. This paper has developed a Deepfake detection method by examining the computer vision features of the digital content. The computer vision features based on the frame change are extracted using a proposed deep learning model called the Cascaded Deep Sparse Auto Encoder (CDSAE) trained by temporal CNN. The detection process is performed using a Deep Neural Network (DNN) to classify the deep fake image/video from the real image/video. The proposed model is implemented using Face2Face, FaceSwap, and DFDC datasets which have secured an improved detection rate when compared to the traditional deep fake detection approaches.
Název v anglickém jazyce
Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection
Popis výsledku anglicky
In the recent research era, artificial intelligence techniques have been used for computer vision, big data analysis, and detection systems. The development of these advanced technologies has also increased security and privacy issues. One kind of this issue is Deepfakes which is the combined word of deep learning and fake. DeepFake refers to the formation of a fake image or video using artificial intelligence approaches which are created for political abuse, fake data transfer, and pornography. This paper has developed a Deepfake detection method by examining the computer vision features of the digital content. The computer vision features based on the frame change are extracted using a proposed deep learning model called the Cascaded Deep Sparse Auto Encoder (CDSAE) trained by temporal CNN. The detection process is performed using a Deep Neural Network (DNN) to classify the deep fake image/video from the real image/video. The proposed model is implemented using Face2Face, FaceSwap, and DFDC datasets which have secured an improved detection rate when compared to the traditional deep fake detection approaches.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PeerJ Computer Science
ISSN
2376-5992
e-ISSN
2376-5992
Svazek periodika
8
Číslo periodika v rámci svazku
JUL 13
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
"Article number: e1040"
Kód UT WoS článku
000867516600001
EID výsledku v databázi Scopus
2-s2.0-85134509137