Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019539" target="_blank" >RIV/62690094:18470/22:50019539 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://peerj.com/articles/cs-1040/" target="_blank" >https://peerj.com/articles/cs-1040/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7717/peerj-cs.1040" target="_blank" >10.7717/peerj-cs.1040</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection

  • Popis výsledku v původním jazyce

    In the recent research era, artificial intelligence techniques have been used for computer vision, big data analysis, and detection systems. The development of these advanced technologies has also increased security and privacy issues. One kind of this issue is Deepfakes which is the combined word of deep learning and fake. DeepFake refers to the formation of a fake image or video using artificial intelligence approaches which are created for political abuse, fake data transfer, and pornography. This paper has developed a Deepfake detection method by examining the computer vision features of the digital content. The computer vision features based on the frame change are extracted using a proposed deep learning model called the Cascaded Deep Sparse Auto Encoder (CDSAE) trained by temporal CNN. The detection process is performed using a Deep Neural Network (DNN) to classify the deep fake image/video from the real image/video. The proposed model is implemented using Face2Face, FaceSwap, and DFDC datasets which have secured an improved detection rate when compared to the traditional deep fake detection approaches.

  • Název v anglickém jazyce

    Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection

  • Popis výsledku anglicky

    In the recent research era, artificial intelligence techniques have been used for computer vision, big data analysis, and detection systems. The development of these advanced technologies has also increased security and privacy issues. One kind of this issue is Deepfakes which is the combined word of deep learning and fake. DeepFake refers to the formation of a fake image or video using artificial intelligence approaches which are created for political abuse, fake data transfer, and pornography. This paper has developed a Deepfake detection method by examining the computer vision features of the digital content. The computer vision features based on the frame change are extracted using a proposed deep learning model called the Cascaded Deep Sparse Auto Encoder (CDSAE) trained by temporal CNN. The detection process is performed using a Deep Neural Network (DNN) to classify the deep fake image/video from the real image/video. The proposed model is implemented using Face2Face, FaceSwap, and DFDC datasets which have secured an improved detection rate when compared to the traditional deep fake detection approaches.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PeerJ Computer Science

  • ISSN

    2376-5992

  • e-ISSN

    2376-5992

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    JUL 13

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    "Article number: e1040"

  • Kód UT WoS článku

    000867516600001

  • EID výsledku v databázi Scopus

    2-s2.0-85134509137