Deep learning model for deep fake face recognition and detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F22%3A50019186" target="_blank" >RIV/62690094:18470/22:50019186 - isvavai.cz</a>
Výsledek na webu
<a href="https://peerj.com/articles/cs-881/#" target="_blank" >https://peerj.com/articles/cs-881/#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj-cs.881" target="_blank" >10.7717/peerj-cs.881</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep learning model for deep fake face recognition and detection
Popis výsledku v původním jazyce
Deep Learning is an effective technique and used in various fields of natural language processing, computer vision, image processing and machine vision. Deep fakes uses deep learning technique to synthesis and manipulate image of a person in which human beings cannot distinguish the fake one. By using generative adversarial neural networks (GAN) deep fakes are generated which may threaten the public. Detecting deep fake image content plays a vital role. Many research works have been done in detection of deep fakes in image manipulation. The main issues in the existing techniques are inaccurate, consumption time is high. In this work we implement detecting of deep fake face image analysis using deep learning technique of fisherface using Local Binary Pattern Histogram (FF-LBPH). Fisherface algorithm is used to recognize the face by reduction of the dimension in the face space using LBPH. Then apply DBN with RBM for deep fake detection classifier. The public data sets used in this work are FFHQ, 100K-Faces DFFD, CASIA-WebFace.
Název v anglickém jazyce
Deep learning model for deep fake face recognition and detection
Popis výsledku anglicky
Deep Learning is an effective technique and used in various fields of natural language processing, computer vision, image processing and machine vision. Deep fakes uses deep learning technique to synthesis and manipulate image of a person in which human beings cannot distinguish the fake one. By using generative adversarial neural networks (GAN) deep fakes are generated which may threaten the public. Detecting deep fake image content plays a vital role. Many research works have been done in detection of deep fakes in image manipulation. The main issues in the existing techniques are inaccurate, consumption time is high. In this work we implement detecting of deep fake face image analysis using deep learning technique of fisherface using Local Binary Pattern Histogram (FF-LBPH). Fisherface algorithm is used to recognize the face by reduction of the dimension in the face space using LBPH. Then apply DBN with RBM for deep fake detection classifier. The public data sets used in this work are FFHQ, 100K-Faces DFFD, CASIA-WebFace.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PeerJ Computer Science
ISSN
2376-5992
e-ISSN
2376-5992
Svazek periodika
8
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
"Article Number: e881"
Kód UT WoS článku
000763763300002
EID výsledku v databázi Scopus
—