VIOLA jones algorithm with capsule graph network for deepfake detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020454" target="_blank" >RIV/62690094:18470/23:50020454 - isvavai.cz</a>
Výsledek na webu
<a href="https://peerj.com/articles/cs-1313/" target="_blank" >https://peerj.com/articles/cs-1313/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj-cs.1313" target="_blank" >10.7717/peerj-cs.1313</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
VIOLA jones algorithm with capsule graph network for deepfake detection
Popis výsledku v původním jazyce
DeepFake is a forged image or video created using deep learning techniques. The present fake content of the detection technique can detect trivial images such as barefaced fake faces. Moreover, the capability of current methods to detect fake faces is minimal. Many recent types of research have made the fake detection algorithm from rule-based to machine-learning models. However, the emergence of deep learning technology with intelligent improvement motivates this specified research to use deep learning techniques. Thus, it is proposed to have VIOLA Jones's (VJ) algorithm for selecting the best features with Capsule Graph Neural Network (CN). The graph neural network is improved by capsule-based node feature extraction to improve the results of the graph neural network. The experiment is evaluated with CelebDF-FaceForencics++ (c23) datasets, which combines FaceForencies++ (c23) and Celeb-DF. In the end, it is proved that the accuracy of the proposed model has achieved 94.
Název v anglickém jazyce
VIOLA jones algorithm with capsule graph network for deepfake detection
Popis výsledku anglicky
DeepFake is a forged image or video created using deep learning techniques. The present fake content of the detection technique can detect trivial images such as barefaced fake faces. Moreover, the capability of current methods to detect fake faces is minimal. Many recent types of research have made the fake detection algorithm from rule-based to machine-learning models. However, the emergence of deep learning technology with intelligent improvement motivates this specified research to use deep learning techniques. Thus, it is proposed to have VIOLA Jones's (VJ) algorithm for selecting the best features with Capsule Graph Neural Network (CN). The graph neural network is improved by capsule-based node feature extraction to improve the results of the graph neural network. The experiment is evaluated with CelebDF-FaceForencics++ (c23) datasets, which combines FaceForencies++ (c23) and Celeb-DF. In the end, it is proved that the accuracy of the proposed model has achieved 94.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PeerJ Computer Science
ISSN
2376-5992
e-ISSN
2376-5992
Svazek periodika
9
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
"Article Number: e1313"
Kód UT WoS článku
000996343300001
EID výsledku v databázi Scopus
2-s2.0-85159173260