Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148691" target="_blank" >RIV/00216305:26220/23:PU148691 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.inffus.2023.101945" target="_blank" >https://doi.org/10.1016/j.inffus.2023.101945</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.inffus.2023.101945" target="_blank" >10.1016/j.inffus.2023.101945</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends
Popis výsledku v původním jazyce
Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.
Název v anglickém jazyce
Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends
Popis výsledku anglicky
Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Fusion
ISSN
1566-2535
e-ISSN
1872-6305
Svazek periodika
100
Číslo periodika v rámci svazku
December 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
37
Strana od-do
1-37
Kód UT WoS článku
001055273000001
EID výsledku v databázi Scopus
2-s2.0-85166914338