Implementation of a deep learning model for vertebral segmentation in CT data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148717" target="_blank" >RIV/00216305:26220/23:PU148717 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/eeict.2023.41" target="_blank" >10.13164/eeict.2023.41</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation of a deep learning model for vertebral segmentation in CT data
Popis výsledku v původním jazyce
This paper deals with the problem of vertebral segmentation in CT data with the use of deep learning approaches. Automatic segmentation of vertebrae is a very complex issue and would simplify the work of radiologists and doctors. The paper is focused on one of the models published and submitted to the Large Scale Vertebrae Segmentation Challenge (VerSe) in 2020 from C. Payer et al. – Improving Coarse to Fine Vertebrae Localisation and Segmentation with SpatialConfiguration-Net and U-Net and its implementation and modification. The model is evaluated on the corresponding public and hidden dataset. Its modification shows an improvement of the results in comparison with the published results, a mean Dice score improved from 0.9165 to 0.9302 on the public dataset and from 0.8971 to 0.9264 on the hidden dataset.
Název v anglickém jazyce
Implementation of a deep learning model for vertebral segmentation in CT data
Popis výsledku anglicky
This paper deals with the problem of vertebral segmentation in CT data with the use of deep learning approaches. Automatic segmentation of vertebrae is a very complex issue and would simplify the work of radiologists and doctors. The paper is focused on one of the models published and submitted to the Large Scale Vertebrae Segmentation Challenge (VerSe) in 2020 from C. Payer et al. – Improving Coarse to Fine Vertebrae Localisation and Segmentation with SpatialConfiguration-Net and U-Net and its implementation and modification. The model is evaluated on the corresponding public and hidden dataset. Its modification shows an improvement of the results in comparison with the published results, a mean Dice score improved from 0.9165 to 0.9302 on the public dataset and from 0.8971 to 0.9264 on the hidden dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings II of the 29th Conference STUDENT EEICT 2023 Selected papers
ISBN
978-80-214-6154-3
ISSN
2788-1334
e-ISSN
—
Počet stran výsledku
4
Strana od-do
41-44
Název nakladatele
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo vydání
Brno, Czech Republic
Místo konání akce
Brno
Datum konání akce
25. 4. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—