Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Segmentation of optic disc and cup in retinal images using of deep learning approaches

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148718" target="_blank" >RIV/00216305:26220/23:PU148718 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_1.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_1.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Segmentation of optic disc and cup in retinal images using of deep learning approaches

  • Popis výsledku v původním jazyce

    This paper presents a comparative analysis of optic disc and cup segmentation in retinal fundus images using two deep learning models: the classical U-net and its modified version, nnU-Net. The models were trained and tested on publicly available databases consisting of 1295 images for training and 555 images for testing. The results indicate that while nnU-Net demonstrated only slight improvements in disc segmentation on the test database, it significantly outperformed the U-net model in optical cup segmentation.

  • Název v anglickém jazyce

    Segmentation of optic disc and cup in retinal images using of deep learning approaches

  • Popis výsledku anglicky

    This paper presents a comparative analysis of optic disc and cup segmentation in retinal fundus images using two deep learning models: the classical U-net and its modified version, nnU-Net. The models were trained and tested on publicly available databases consisting of 1295 images for training and 555 images for testing. The results indicate that while nnU-Net demonstrated only slight improvements in disc segmentation on the test database, it significantly outperformed the U-net model in optical cup segmentation.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-18578S" target="_blank" >GA21-18578S: Funkční zobrazování sítnice s dvěma vlnovými délkami a současnou akvizicí biosignálů pro hodnocení očního krevního oběhu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů