Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Implementation of a deep learning model for segmentation of multiple myeloma in CT data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151704" target="_blank" >RIV/00216305:26220/24:PU151704 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Implementation of a deep learning model for segmentation of multiple myeloma in CT data

  • Popis výsledku v původním jazyce

    This paper deals with the implementation of a deep learning model for spinal tumor segmentation of multiple myeloma patients in CT data. Deep learning is becoming an important part of developing computer-aided detection and diagnosis systems. In this study, a database of 25 patients who were imaged on spectral CT and for whom different parametric images (conventional CT, virtual monoenergetic images, calcium suppression images) were reconstructed, was used. Three convolutional neural network models based on the nnU-Net framework for lytic lesion segmentation were trained on the selected data. The results were evaluated on a test database and the trained models were compared.

  • Název v anglickém jazyce

    Implementation of a deep learning model for segmentation of multiple myeloma in CT data

  • Popis výsledku anglicky

    This paper deals with the implementation of a deep learning model for spinal tumor segmentation of multiple myeloma patients in CT data. Deep learning is becoming an important part of developing computer-aided detection and diagnosis systems. In this study, a database of 25 patients who were imaged on spectral CT and for whom different parametric images (conventional CT, virtual monoenergetic images, calcium suppression images) were reconstructed, was used. Three convolutional neural network models based on the nnU-Net framework for lytic lesion segmentation were trained on the selected data. The results were evaluated on a test database and the trained models were compared.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings I of the 30st Conference STUDENT EEICT 2024: General papers

  • ISBN

    978-80-214-6231-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    105-108

  • Název nakladatele

    Brno University of Technology, Faculty of Electrical Engineering and Communication

  • Místo vydání

    Brno, Czech Republic

  • Místo konání akce

    Brno

  • Datum konání akce

    23. 4. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku