Image demosaicing using Deep Image Prior
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148723" target="_blank" >RIV/00216305:26220/23:PU148723 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image demosaicing using Deep Image Prior
Popis výsledku v původním jazyce
The paper focuses on the problem of image demosaicing using the deep image prior. The deep image prior (DIP) is an uncommon concept that uses a generative neural network which, however, utilizes only the degraded image as the input for training. A novel method for image demosaicing is proposed, based on DIP, and it is compared with common demosaicing methods. In terms of the objective PSNR and SSIM values, the proposed method proved to be comparable with a widely used Malvar’s demosaicing method. Nevertheless, subjectively, DIP produces demosaiced images comparable with the superior Menon’s algorithm. Unfortunately, the proposed method turned out to be computationally immensely challenging.
Název v anglickém jazyce
Image demosaicing using Deep Image Prior
Popis výsledku anglicky
The paper focuses on the problem of image demosaicing using the deep image prior. The deep image prior (DIP) is an uncommon concept that uses a generative neural network which, however, utilizes only the degraded image as the input for training. A novel method for image demosaicing is proposed, based on DIP, and it is compared with common demosaicing methods. In terms of the objective PSNR and SSIM values, the proposed method proved to be comparable with a widely used Malvar’s demosaicing method. Nevertheless, subjectively, DIP produces demosaiced images comparable with the superior Menon’s algorithm. Unfortunately, the proposed method turned out to be computationally immensely challenging.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-07294S" target="_blank" >GA23-07294S: Od perceptronu k percepci: psychoakusticky motivovaná rekonstrukce audio signálu s využitím prvků hlubokého učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů