Avoiding Undesirable Solutions of Deep Blind Image Deconvolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F24%3A00583748" target="_blank" >RIV/67985556:_____/24:00583748 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0012397600003660" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0012397600003660</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012397600003660" target="_blank" >10.5220/0012397600003660</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Avoiding Undesirable Solutions of Deep Blind Image Deconvolution
Popis výsledku v původním jazyce
Blind image deconvolution (BID) is a severely ill-posed optimization problem requiring additional information, typically in the form of regularization. Deep image prior (DIP) promises to model a naturally looking image due to a well-chosen structure of a neural network. The use of DIP in BID results in a significant perfor-mance improvement in terms of average PSNR. In this contribution, we offer qualitative analysis of selected DIP-based methods w.r.t. two types of undesired solutions: blurred image (no-blur) and a visually corrupted image (solution with artifacts). We perform a sensitivity study showing which aspects of the DIP-based algorithms help to avoid which undesired mode. We confirm that the no-blur can be avoided using either sharp image prior or tuning of the hyperparameters of the optimizer. The artifact solution is a harder problem since variations that suppress the artifacts often suppress good solutions as well. Switching to the structural similarity index measure fro m L 2 norm in loss was found to be the most successful approach to mitigate the artifacts.
Název v anglickém jazyce
Avoiding Undesirable Solutions of Deep Blind Image Deconvolution
Popis výsledku anglicky
Blind image deconvolution (BID) is a severely ill-posed optimization problem requiring additional information, typically in the form of regularization. Deep image prior (DIP) promises to model a naturally looking image due to a well-chosen structure of a neural network. The use of DIP in BID results in a significant perfor-mance improvement in terms of average PSNR. In this contribution, we offer qualitative analysis of selected DIP-based methods w.r.t. two types of undesired solutions: blurred image (no-blur) and a visually corrupted image (solution with artifacts). We perform a sensitivity study showing which aspects of the DIP-based algorithms help to avoid which undesired mode. We confirm that the no-blur can be avoided using either sharp image prior or tuning of the hyperparameters of the optimizer. The artifact solution is a harder problem since variations that suppress the artifacts often suppress good solutions as well. Switching to the structural similarity index measure fro m L 2 norm in loss was found to be the most successful approach to mitigate the artifacts.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2024)
ISBN
978-989-758-679-8
ISSN
2184-4321
e-ISSN
—
Počet stran výsledku
7
Strana od-do
559-566
Název nakladatele
SciTePress
Místo vydání
Setúbal
Místo konání akce
Roma
Datum konání akce
27. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—