Blood pressure estimation using smartphone
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148760" target="_blank" >RIV/00216305:26220/23:PU148760 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2023_sbornik_2_v2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/eeict.2023.129" target="_blank" >10.13164/eeict.2023.129</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Blood pressure estimation using smartphone
Popis výsledku v původním jazyce
This paper presents an experimental cuff-less measurement of systolic (SBP) and diastolic blood pressure (DBP) using smartphone. A photoplethysmographic signal (PPG) measured by a smartphone camera is used to estimate blood pressure (BP). This paper contains comparison of several machine learning (ML) methods for BP estimation. Filtering the PPG signal with a band-pass filter (0.5-12 Hz) followed by feature extraction and using Random Forest (RF) methods separately or as a weak regressor in adaptive boosting (AdaBoost) or bootstrap aggregating (Boosting) reached the best results according to Association for the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) standards among all regression ML models. The mean absolute error (MAE) and standard deviation (SD) of Bagging model were 4.532±3.760 mmHg for SBP and 2.738±3.032 mmHg for DBP (AAMI). This result meets the criteria of the AAMI standard.
Název v anglickém jazyce
Blood pressure estimation using smartphone
Popis výsledku anglicky
This paper presents an experimental cuff-less measurement of systolic (SBP) and diastolic blood pressure (DBP) using smartphone. A photoplethysmographic signal (PPG) measured by a smartphone camera is used to estimate blood pressure (BP). This paper contains comparison of several machine learning (ML) methods for BP estimation. Filtering the PPG signal with a band-pass filter (0.5-12 Hz) followed by feature extraction and using Random Forest (RF) methods separately or as a weak regressor in adaptive boosting (AdaBoost) or bootstrap aggregating (Boosting) reached the best results according to Association for the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) standards among all regression ML models. The mean absolute error (MAE) and standard deviation (SD) of Bagging model were 4.532±3.760 mmHg for SBP and 2.738±3.032 mmHg for DBP (AAMI). This result meets the criteria of the AAMI standard.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings II of the 29 th Conference STUDENT EEICT 2023 Selected papers
ISBN
978-80-214-6154-3
ISSN
2788-1334
e-ISSN
—
Počet stran výsledku
4
Strana od-do
129-132
Název nakladatele
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
25. 4. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—