Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Abnormal Behavior Determination Model of Multimedia Classroom Students Based on Multi-task Deep Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148924" target="_blank" >RIV/00216305:26220/23:PU148924 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11036-023-02187-7" target="_blank" >https://link.springer.com/article/10.1007/s11036-023-02187-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11036-023-02187-7" target="_blank" >10.1007/s11036-023-02187-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Abnormal Behavior Determination Model of Multimedia Classroom Students Based on Multi-task Deep Learning

  • Popis výsledku v původním jazyce

    The abnormal behavior of students in the multimedia classroom is not significant, which leads to the difficulty in determining abnormal behavior. Therefore, the abnormal behavior determination model of multimedia classroom students based on multi-task deep learning is constructed. The eigenimage filtering algorithm is used to denoise the captured multimedia classroom student images. The multimedia classroom student images are denoised using an adaptive histogram equalization algorithm to enhance the denoised multimedia classroom student images. The multimedia classroom student images are segmented using the Renyi entropy method, and the student behavioral characteristics are determined based on the image segmentation results. Student behavioral characteristics are determined based on image segmentation results. A multi-task deep learning model is built based on convolutional neural networks. The model mainly uses convolutional neural networks and students' behavioral features to classify students' abnormal behaviors in multimedia classrooms, achieve the determination of abnormal behaviors of multimedia classroom students, and obtain relevant determination results. The experimental results show that the model can effectively determine the abnormal behaviors of students in multimedia classrooms, such as looking to the right and looking left, playing with mobile phones, etc. The accuracy of the determination of abnormal behavior is higher than 98%, and the practical application is good.

  • Název v anglickém jazyce

    Abnormal Behavior Determination Model of Multimedia Classroom Students Based on Multi-task Deep Learning

  • Popis výsledku anglicky

    The abnormal behavior of students in the multimedia classroom is not significant, which leads to the difficulty in determining abnormal behavior. Therefore, the abnormal behavior determination model of multimedia classroom students based on multi-task deep learning is constructed. The eigenimage filtering algorithm is used to denoise the captured multimedia classroom student images. The multimedia classroom student images are denoised using an adaptive histogram equalization algorithm to enhance the denoised multimedia classroom student images. The multimedia classroom student images are segmented using the Renyi entropy method, and the student behavioral characteristics are determined based on the image segmentation results. Student behavioral characteristics are determined based on image segmentation results. A multi-task deep learning model is built based on convolutional neural networks. The model mainly uses convolutional neural networks and students' behavioral features to classify students' abnormal behaviors in multimedia classrooms, achieve the determination of abnormal behaviors of multimedia classroom students, and obtain relevant determination results. The experimental results show that the model can effectively determine the abnormal behaviors of students in multimedia classrooms, such as looking to the right and looking left, playing with mobile phones, etc. The accuracy of the determination of abnormal behavior is higher than 98%, and the practical application is good.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MOBILE NETWORKS & APPLICATIONS

  • ISSN

    1383-469X

  • e-ISSN

    1572-8153

  • Svazek periodika

    neuvedeno

  • Číslo periodika v rámci svazku

    neuvedeno

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001050927300003

  • EID výsledku v databázi Scopus

    2-s2.0-85168327067