Abnormal Behavior Determination Model of Multimedia Classroom Students Based on Multi-task Deep Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148924" target="_blank" >RIV/00216305:26220/23:PU148924 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11036-023-02187-7" target="_blank" >https://link.springer.com/article/10.1007/s11036-023-02187-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11036-023-02187-7" target="_blank" >10.1007/s11036-023-02187-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Abnormal Behavior Determination Model of Multimedia Classroom Students Based on Multi-task Deep Learning
Popis výsledku v původním jazyce
The abnormal behavior of students in the multimedia classroom is not significant, which leads to the difficulty in determining abnormal behavior. Therefore, the abnormal behavior determination model of multimedia classroom students based on multi-task deep learning is constructed. The eigenimage filtering algorithm is used to denoise the captured multimedia classroom student images. The multimedia classroom student images are denoised using an adaptive histogram equalization algorithm to enhance the denoised multimedia classroom student images. The multimedia classroom student images are segmented using the Renyi entropy method, and the student behavioral characteristics are determined based on the image segmentation results. Student behavioral characteristics are determined based on image segmentation results. A multi-task deep learning model is built based on convolutional neural networks. The model mainly uses convolutional neural networks and students' behavioral features to classify students' abnormal behaviors in multimedia classrooms, achieve the determination of abnormal behaviors of multimedia classroom students, and obtain relevant determination results. The experimental results show that the model can effectively determine the abnormal behaviors of students in multimedia classrooms, such as looking to the right and looking left, playing with mobile phones, etc. The accuracy of the determination of abnormal behavior is higher than 98%, and the practical application is good.
Název v anglickém jazyce
Abnormal Behavior Determination Model of Multimedia Classroom Students Based on Multi-task Deep Learning
Popis výsledku anglicky
The abnormal behavior of students in the multimedia classroom is not significant, which leads to the difficulty in determining abnormal behavior. Therefore, the abnormal behavior determination model of multimedia classroom students based on multi-task deep learning is constructed. The eigenimage filtering algorithm is used to denoise the captured multimedia classroom student images. The multimedia classroom student images are denoised using an adaptive histogram equalization algorithm to enhance the denoised multimedia classroom student images. The multimedia classroom student images are segmented using the Renyi entropy method, and the student behavioral characteristics are determined based on the image segmentation results. Student behavioral characteristics are determined based on image segmentation results. A multi-task deep learning model is built based on convolutional neural networks. The model mainly uses convolutional neural networks and students' behavioral features to classify students' abnormal behaviors in multimedia classrooms, achieve the determination of abnormal behaviors of multimedia classroom students, and obtain relevant determination results. The experimental results show that the model can effectively determine the abnormal behaviors of students in multimedia classrooms, such as looking to the right and looking left, playing with mobile phones, etc. The accuracy of the determination of abnormal behavior is higher than 98%, and the practical application is good.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MOBILE NETWORKS & APPLICATIONS
ISSN
1383-469X
e-ISSN
1572-8153
Svazek periodika
neuvedeno
Číslo periodika v rámci svazku
neuvedeno
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
„“-„“
Kód UT WoS článku
001050927300003
EID výsledku v databázi Scopus
2-s2.0-85168327067