ISLES Challenge: U-Shaped Convolution Neural Network with Dilated Convolution for 3D Stroke Lesion Segmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F19%3A63520856" target="_blank" >RIV/70883521:28140/19:63520856 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-11723-8_32" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-11723-8_32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-11723-8_32" target="_blank" >10.1007/978-3-030-11723-8_32</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ISLES Challenge: U-Shaped Convolution Neural Network with Dilated Convolution for 3D Stroke Lesion Segmentation
Popis výsledku v původním jazyce
In this paper, we propose the algorithm for stroke lesion segmentation based on a deep convolutional neural network (CNN). The model is based on U-shaped CNN, which has been applied successfully to other medical image segmentation tasks. The network architecture was derived from the model presented in Isensee et al. [1] and is capable of processing whole 3D images. The model incorporates the convolution layers through upsampled filters – also known as dilated convolution. This change enlarges filter’s field of the view and allows the net to integrate larger context into the computation. We add the dilated convolution into different parts of network architecture and study the impact on the overall model performance. The best model which uses the dilated convolution in the input of the net outperforms the original architecture in nearly all used evaluation metrics. The code and trained models can be found on the GitHub website: http://github.com/tureckova/ISLES2018/.
Název v anglickém jazyce
ISLES Challenge: U-Shaped Convolution Neural Network with Dilated Convolution for 3D Stroke Lesion Segmentation
Popis výsledku anglicky
In this paper, we propose the algorithm for stroke lesion segmentation based on a deep convolutional neural network (CNN). The model is based on U-shaped CNN, which has been applied successfully to other medical image segmentation tasks. The network architecture was derived from the model presented in Isensee et al. [1] and is capable of processing whole 3D images. The model incorporates the convolution layers through upsampled filters – also known as dilated convolution. This change enlarges filter’s field of the view and allows the net to integrate larger context into the computation. We add the dilated convolution into different parts of network architecture and study the impact on the overall model performance. The best model which uses the dilated convolution in the input of the net outperforms the original architecture in nearly all used evaluation metrics. The code and trained models can be found on the GitHub website: http://github.com/tureckova/ISLES2018/.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-11722-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
319-327
Název nakladatele
Springer International Publishing AG
Místo vydání
Basel
Místo konání akce
Granada
Datum konání akce
16. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—