Wall segmentation in 2D images using convolutional neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020729" target="_blank" >RIV/62690094:18470/23:50020729 - isvavai.cz</a>
Výsledek na webu
<a href="https://peerj.com/articles/cs-1565/" target="_blank" >https://peerj.com/articles/cs-1565/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj-cs.1565" target="_blank" >10.7717/peerj-cs.1565</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wall segmentation in 2D images using convolutional neural networks
Popis výsledku v původním jazyce
Wall segmentation is a special case of semantic segmentation, and the task is to classify each pixel into one of two classes: wall and no-wall. The segmentation model returns a mask showing where objects like windows and furniture are located, as well as walls. This article proposes the module's structure for semantic segmentation of walls in 2D images, which can effectively address the problem of wall segmentation. The proposed model achieved higher accuracy and faster execution than other solutions. An encoder-decoder architecture of the segmentation module was used. Dilated ResNet50/101 network was used as an encoder, representing ResNet50/101 network in which dilated convolutional layers replaced the last convolutional layers. The ADE20K dataset subset containing only interior images, was used for model training, while only its subset was used for model evaluation. Three different approaches to model training were analyzed in the research. On the validation dataset, the best approach based on the proposed structure with the ResNet101 network resulted in an average accuracy at the pixel level of 92.13% and an intersection over union (IoU) of 72.58%. Moreover, all proposed approaches can be applied to recognize other objects in the image to solve specific tasks.
Název v anglickém jazyce
Wall segmentation in 2D images using convolutional neural networks
Popis výsledku anglicky
Wall segmentation is a special case of semantic segmentation, and the task is to classify each pixel into one of two classes: wall and no-wall. The segmentation model returns a mask showing where objects like windows and furniture are located, as well as walls. This article proposes the module's structure for semantic segmentation of walls in 2D images, which can effectively address the problem of wall segmentation. The proposed model achieved higher accuracy and faster execution than other solutions. An encoder-decoder architecture of the segmentation module was used. Dilated ResNet50/101 network was used as an encoder, representing ResNet50/101 network in which dilated convolutional layers replaced the last convolutional layers. The ADE20K dataset subset containing only interior images, was used for model training, while only its subset was used for model evaluation. Three different approaches to model training were analyzed in the research. On the validation dataset, the best approach based on the proposed structure with the ResNet101 network resulted in an average accuracy at the pixel level of 92.13% and an intersection over union (IoU) of 72.58%. Moreover, all proposed approaches can be applied to recognize other objects in the image to solve specific tasks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PEERJ COMPUTER SCIENCE
ISSN
2376-5992
e-ISSN
2376-5992
Svazek periodika
9
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
"Article Number: e1565"
Kód UT WoS článku
001072385000002
EID výsledku v databázi Scopus
2-s2.0-85172212838