Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Upsampling Algorithms for Autoencoder Segmentation Neural Networks: A Comparison Study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU134013" target="_blank" >RIV/00216305:26220/19:PU134013 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/8970918" target="_blank" >https://ieeexplore.ieee.org/abstract/document/8970918</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICUMT48472.2019.8970918" target="_blank" >10.1109/ICUMT48472.2019.8970918</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Upsampling Algorithms for Autoencoder Segmentation Neural Networks: A Comparison Study

  • Popis výsledku v původním jazyce

    This paper compares nine different upsampling methods used in convolutional neural networks in terms of accuracy and processing speed. The process of image segmentation using autoencoder neural networks consists of the image downsampling in the encoder and correspondingly of image upsampling in the decoder part of the network to achieve original image resolution. This paper focuses on the upsampling process in the decoder part of the standard U-Net neural network. Three different interpolations are compared with and without subsequent 1x1 convolution layers and three transpose convolution layers for image upsampling using different size convolutional cores. The experiment has shown that the best practical results were achieved using simple nearest neighbor interpolation upsampling taking into consideration the computational time needed. The network using nearest neighbor interpolation upsampling achieved pixel accuracy of 99.47% and has shown fast training time and convergence in comparison with other networks using different upsampling methods. The data used in this work consist of a lumbar CT spine segmentation dataset.

  • Název v anglickém jazyce

    Upsampling Algorithms for Autoencoder Segmentation Neural Networks: A Comparison Study

  • Popis výsledku anglicky

    This paper compares nine different upsampling methods used in convolutional neural networks in terms of accuracy and processing speed. The process of image segmentation using autoencoder neural networks consists of the image downsampling in the encoder and correspondingly of image upsampling in the decoder part of the network to achieve original image resolution. This paper focuses on the upsampling process in the decoder part of the standard U-Net neural network. Three different interpolations are compared with and without subsequent 1x1 convolution layers and three transpose convolution layers for image upsampling using different size convolutional cores. The experiment has shown that the best practical results were achieved using simple nearest neighbor interpolation upsampling taking into consideration the computational time needed. The network using nearest neighbor interpolation upsampling achieved pixel accuracy of 99.47% and has shown fast training time and convergence in comparison with other networks using different upsampling methods. The data used in this work consist of a lumbar CT spine segmentation dataset.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)

  • ISBN

    978-1-7281-5764-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    1-5

  • Název nakladatele

    Neuveden

  • Místo vydání

    Dublin

  • Místo konání akce

    Dublin

  • Datum konání akce

    28. 10. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000540651700049