MULTICLASS SEGMENTATION OF 3D MEDICAL DATA WITH DEEP LEARNING
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU136707" target="_blank" >RIV/00216305:26220/20:PU136707 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_1.pdf" target="_blank" >https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_1.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MULTICLASS SEGMENTATION OF 3D MEDICAL DATA WITH DEEP LEARNING
Popis výsledku v původním jazyce
This paper deals with multiclass image segmentation using convolutional neural networks. The theoretical part of paper focuses on image segmentation. There are basics principles of neural networks and image segmentation with more types of approaches. In practical part the Unet architecture is chosen and is described for image segmentation more. U-net was applied for medicine dataset which consist from 3D MRI of human brain. There is processing procedure which is more described for image processing of three-dimensional data. There are also methods for data preprocessing which were applied for image multiclass segmentation. Final part of paper evaluates results which were achieved with chosen method.
Název v anglickém jazyce
MULTICLASS SEGMENTATION OF 3D MEDICAL DATA WITH DEEP LEARNING
Popis výsledku anglicky
This paper deals with multiclass image segmentation using convolutional neural networks. The theoretical part of paper focuses on image segmentation. There are basics principles of neural networks and image segmentation with more types of approaches. In practical part the Unet architecture is chosen and is described for image segmentation more. U-net was applied for medicine dataset which consist from 3D MRI of human brain. There is processing procedure which is more described for image processing of three-dimensional data. There are also methods for data preprocessing which were applied for image multiclass segmentation. Final part of paper evaluates results which were achieved with chosen method.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů