Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computerised Analysis of hypomimia and hypokinetic dysarthria for improved diagnosis of Parkinson's disease

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149222" target="_blank" >RIV/00216305:26220/23:PU149222 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2405844023083834" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844023083834</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2023.e21175" target="_blank" >10.1016/j.heliyon.2023.e21175</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computerised Analysis of hypomimia and hypokinetic dysarthria for improved diagnosis of Parkinson's disease

  • Popis výsledku v původním jazyce

    Background and Objective: An ageing society requires easy-to-use approaches for diagnosis and monitoring of neurodegenerative disorders, such as Parkinson’s disease (PD), so that clinicians can effectively adjust a treatment policy and improve patients’ quality of life. Current methods of PD diagnosis and monitoring usually require the patients to come to a hospital, where they undergo several neurological and neuropsychological examinations. These examinations are usually time-consuming, expensive, and performed just a few times per year. Hence, this study explores the possibility of fusing computerised analysis of hypomimia and hypokinetic dysarthria (two motor symptoms manifested in the majority of PD patients) with the goal of proposing a new methodology of PD diagnosis that could be easily integrated into mHealth systems. Methods: We enrolled 73 PD patients and 46 age- and gender-matched healthy controls, who performed several speech/voice tasks while recorded by a microphone and a camera. Acoustic signals were parametrised in the fields of phonation, articulation and prosody. Video recordings of a face were analysed in terms of facial landmarks movement. Both modalities were consequently modelled by the XGBoost algorithm. Results: The acoustic analysis enabled diagnosis of PD with 77 % balanced accuracy, while in the case of the facial analysis, we observed 81 % balanced accuracy. The fusion of both modalities increased the balanced accuracy to 83 % (88 % sensitivity and 78 % specificity). The most informative speech exercise in the multimodality system turned out to be a tongue twister. Additionally, we identified muscle movements that are characteristic of hypomimia. Conclusions: The introduced methodology, which is based on the myriad of speech exercises likewise audio and video modality, allows for the detection of PD with an accuracy of up to 83 %. The speech exercise - tongue twisters occurred to be the most valuable from the clinical point of view. Addi

  • Název v anglickém jazyce

    Computerised Analysis of hypomimia and hypokinetic dysarthria for improved diagnosis of Parkinson's disease

  • Popis výsledku anglicky

    Background and Objective: An ageing society requires easy-to-use approaches for diagnosis and monitoring of neurodegenerative disorders, such as Parkinson’s disease (PD), so that clinicians can effectively adjust a treatment policy and improve patients’ quality of life. Current methods of PD diagnosis and monitoring usually require the patients to come to a hospital, where they undergo several neurological and neuropsychological examinations. These examinations are usually time-consuming, expensive, and performed just a few times per year. Hence, this study explores the possibility of fusing computerised analysis of hypomimia and hypokinetic dysarthria (two motor symptoms manifested in the majority of PD patients) with the goal of proposing a new methodology of PD diagnosis that could be easily integrated into mHealth systems. Methods: We enrolled 73 PD patients and 46 age- and gender-matched healthy controls, who performed several speech/voice tasks while recorded by a microphone and a camera. Acoustic signals were parametrised in the fields of phonation, articulation and prosody. Video recordings of a face were analysed in terms of facial landmarks movement. Both modalities were consequently modelled by the XGBoost algorithm. Results: The acoustic analysis enabled diagnosis of PD with 77 % balanced accuracy, while in the case of the facial analysis, we observed 81 % balanced accuracy. The fusion of both modalities increased the balanced accuracy to 83 % (88 % sensitivity and 78 % specificity). The most informative speech exercise in the multimodality system turned out to be a tongue twister. Additionally, we identified muscle movements that are characteristic of hypomimia. Conclusions: The introduced methodology, which is based on the myriad of speech exercises likewise audio and video modality, allows for the detection of PD with an accuracy of up to 83 %. The speech exercise - tongue twisters occurred to be the most valuable from the clinical point of view. Addi

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    26

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001111636000001

  • EID výsledku v databázi Scopus

    2-s2.0-85174607876