Vehicle-to-Everything (V2X) Datasets for Machine Learning-Based Predictive Quality of Service
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149308" target="_blank" >RIV/00216305:26220/23:PU149308 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10268872" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10268872</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MCOM.004.2200723" target="_blank" >10.1109/MCOM.004.2200723</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vehicle-to-Everything (V2X) Datasets for Machine Learning-Based Predictive Quality of Service
Popis výsledku v původním jazyce
We present two datasets for Machine Learning (ML)-based Predictive Quality of Service (PQoS) comprising Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) radio channel measurements. As V2V and V2I are both indispensable elements for providing connectivity in Intelligent Transport Systems (ITS), we argue that a combination of the two datasets enables the study of Vehicle-to-Everything (V2X) connectivity in its entire complexity. We describe in detail our methodologies for performing V2V and V2I measurement campaigns, and we provide illustrative examples on the use of the collected data. Specifically, we showcase the application of approximate Bayesian Methods using the two presented datasets to portray illustrative use cases of uncertainty-aware Quality of Service and Channel State Information forecasting. Finally, we discuss novel exploratory research direction building upon our work. The V2I and V2V datasets are available on IEEE Dataport, and the code utilized in our numerical experiments is publicly accessible via CodeOcean.
Název v anglickém jazyce
Vehicle-to-Everything (V2X) Datasets for Machine Learning-Based Predictive Quality of Service
Popis výsledku anglicky
We present two datasets for Machine Learning (ML)-based Predictive Quality of Service (PQoS) comprising Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) radio channel measurements. As V2V and V2I are both indispensable elements for providing connectivity in Intelligent Transport Systems (ITS), we argue that a combination of the two datasets enables the study of Vehicle-to-Everything (V2X) connectivity in its entire complexity. We describe in detail our methodologies for performing V2V and V2I measurement campaigns, and we provide illustrative examples on the use of the collected data. Specifically, we showcase the application of approximate Bayesian Methods using the two presented datasets to portray illustrative use cases of uncertainty-aware Quality of Service and Channel State Information forecasting. Finally, we discuss novel exploratory research direction building upon our work. The V2I and V2V datasets are available on IEEE Dataport, and the code utilized in our numerical experiments is publicly accessible via CodeOcean.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE COMMUNICATIONS MAGAZINE
ISSN
0163-6804
e-ISSN
1558-1896
Svazek periodika
61
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
106-112
Kód UT WoS článku
001080991100009
EID výsledku v databázi Scopus
—