Optimized UAV-Based Connectivity Solutions for Urban IoT Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149778" target="_blank" >RIV/00216305:26220/23:PU149778 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10333303" target="_blank" >https://ieeexplore.ieee.org/document/10333303</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICUMT61075.2023.10333303" target="_blank" >10.1109/ICUMT61075.2023.10333303</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimized UAV-Based Connectivity Solutions for Urban IoT Networks
Popis výsledku v původním jazyce
The rapid growth of the Internet of Things (IoT) in cities has resulted in a dense deployment of devices such as sensors and smart meters. These devices necessitate a steady and reliable internet connection. Traditional cellular networks, such as NB-IoT and LTE Cat-M, need help to meet these demands where the performance of current infrastructure has severely degraded due to high device density. As an alternative to existing cell towers, Unmanned Aerial Vehicle Base Stations (UAV-BSs) are proposed in this paper to address this challenge. These UAV-BSs act as mobile cell towers and are strategically placed in regions with a high concentration of IoT devices to improve network coverage and capacity. Furthermore, Tethered UAVs (TUAVs) powered by robotic Cellular-on-Wheels (COW) units support a robust backhaul link between the UAV-BSs and the network core. The study used the K-means algorithm, a machine-learning technique that clusters IoT devices according to their spatial distribution, to select the optimal places for the UAV-BSs. Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are then used to refine the positions, systematically investigating multiple UAV-BSs placements to discover the most effective arrangement. Finally, the paper utilizes a new data transmission technique, the 'Mini slots' scheduling algorithm, to improve data exchange efficiency between IoT devices and UAV-BSs.
Název v anglickém jazyce
Optimized UAV-Based Connectivity Solutions for Urban IoT Networks
Popis výsledku anglicky
The rapid growth of the Internet of Things (IoT) in cities has resulted in a dense deployment of devices such as sensors and smart meters. These devices necessitate a steady and reliable internet connection. Traditional cellular networks, such as NB-IoT and LTE Cat-M, need help to meet these demands where the performance of current infrastructure has severely degraded due to high device density. As an alternative to existing cell towers, Unmanned Aerial Vehicle Base Stations (UAV-BSs) are proposed in this paper to address this challenge. These UAV-BSs act as mobile cell towers and are strategically placed in regions with a high concentration of IoT devices to improve network coverage and capacity. Furthermore, Tethered UAVs (TUAVs) powered by robotic Cellular-on-Wheels (COW) units support a robust backhaul link between the UAV-BSs and the network core. The study used the K-means algorithm, a machine-learning technique that clusters IoT devices according to their spatial distribution, to select the optimal places for the UAV-BSs. Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are then used to refine the positions, systematically investigating multiple UAV-BSs placements to discover the most effective arrangement. Finally, the paper utilizes a new data transmission technique, the 'Mini slots' scheduling algorithm, to improve data exchange efficiency between IoT devices and UAV-BSs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
979-8-3503-9328-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
181-186
Název nakladatele
IEEE Computer Society
Místo vydání
neuveden
Místo konání akce
Gent, Belgium
Datum konání akce
30. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—