Approaching K-Means for Multiantenna UAV Positioning in Combination With a Max-SIC-Min-Rate Framework to Enable Aerial IoT Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10251104" target="_blank" >RIV/61989100:27740/22:10251104 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/22:10251104
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9934905" target="_blank" >https://ieeexplore.ieee.org/document/9934905</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2022.3218799" target="_blank" >10.1109/ACCESS.2022.3218799</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approaching K-Means for Multiantenna UAV Positioning in Combination With a Max-SIC-Min-Rate Framework to Enable Aerial IoT Networks
Popis výsledku v původním jazyce
In long-range wireless communication networks, the fading channels described in channel state information are strongly related to distance and the path loss exponent and represent a major challenge in delivering the performance required to support emerging applications. Conveniently, multiple antennas and cooperative relays are efficient solutions that can combat fading channels, thereby improving networking capacity and transmission reliability. This study investigated the use of multi-antenna unmanned aerial vehicle (UAV)s as aerial Internet of Things (IoT) relays and employed their direct line-of-sight benefits to assist IoT wireless networks. To improve the outage probability, system throughput, and energy efficiency (EE), we first considered a combination of transmit antenna selection at the transmitter and the selection combining technique at the receiver to determine the best channel from the pre-coding channel matrix. Using a practical model in a three-dimensional earth environment in combination with the K-means algorithm, we then investigated optimal UAV placement to obtain optimal channel state information for the non-orthogonal multiple access (NOMA) -IoT device cluster globally, thereby ensuring the quality of service for the IoT devices. We introduced a max-successive interference cancellation-min-rate framework for non-ordered NOMA devices, thus deriving theoretical expressions in novel closed forms for two independent scenarios: (i) Rayleigh and (ii) Nakagami- m fading channels. By optimizing the UAV placement, the investigated results applied to the UAV scheme delivered better performance in a NOMA-IoT network than in a terrestrial relay (TR) scheme. Finally, the study examines a variety of models and presents algorithms for Monte Carlo simulations to verify the theoretical results.
Název v anglickém jazyce
Approaching K-Means for Multiantenna UAV Positioning in Combination With a Max-SIC-Min-Rate Framework to Enable Aerial IoT Networks
Popis výsledku anglicky
In long-range wireless communication networks, the fading channels described in channel state information are strongly related to distance and the path loss exponent and represent a major challenge in delivering the performance required to support emerging applications. Conveniently, multiple antennas and cooperative relays are efficient solutions that can combat fading channels, thereby improving networking capacity and transmission reliability. This study investigated the use of multi-antenna unmanned aerial vehicle (UAV)s as aerial Internet of Things (IoT) relays and employed their direct line-of-sight benefits to assist IoT wireless networks. To improve the outage probability, system throughput, and energy efficiency (EE), we first considered a combination of transmit antenna selection at the transmitter and the selection combining technique at the receiver to determine the best channel from the pre-coding channel matrix. Using a practical model in a three-dimensional earth environment in combination with the K-means algorithm, we then investigated optimal UAV placement to obtain optimal channel state information for the non-orthogonal multiple access (NOMA) -IoT device cluster globally, thereby ensuring the quality of service for the IoT devices. We introduced a max-successive interference cancellation-min-rate framework for non-ordered NOMA devices, thus deriving theoretical expressions in novel closed forms for two independent scenarios: (i) Rayleigh and (ii) Nakagami- m fading channels. By optimizing the UAV placement, the investigated results applied to the UAV scheme delivered better performance in a NOMA-IoT network than in a terrestrial relay (TR) scheme. Finally, the study examines a variety of models and presents algorithms for Monte Carlo simulations to verify the theoretical results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
115157-115178
Kód UT WoS článku
000880584800001
EID výsledku v databázi Scopus
—