NORMALIZED SOLUTIONS FOR SCHRODINGER EQUATIONS WITH CRITICAL EXPONENTIAL GROWTH IN R<SUP>2</SUP>
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU150392" target="_blank" >RIV/00216305:26220/23:PU150392 - isvavai.cz</a>
Výsledek na webu
<a href="https://epubs.siam.org/doi/10.1137/22M1521675" target="_blank" >https://epubs.siam.org/doi/10.1137/22M1521675</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M1521675" target="_blank" >10.1137/22M1521675</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
NORMALIZED SOLUTIONS FOR SCHRODINGER EQUATIONS WITH CRITICAL EXPONENTIAL GROWTH IN R<SUP>2</SUP>
Popis výsledku v původním jazyce
For any a > 0, we study the existence of normalized solutions and ground state solutions to the following Schrodinger equation with L-2-constraint: { -Delta u + lambda u = b(x)f(u) x is an element of R-2, integral(2)(R) u(2)dx = a, where lambda is an element of R is a Lagrange multiplier, the potential b is an element of C(R-2, (0, infinity)) satisfies 0 < lim(|y|->infinity) b(y) <= inf(x is an element of)R(2) b(x) and appears as a converse direction of the Rabinowitz-type trapping potential, and the reaction f is an element of C(R, R) enjoys critical exponential growth of Trudinger-Moser type. Under two different kinds of assumptions on f, we prove several new existence results, which, in the context of normalized solutions, can be considered as both counterparts of planar unconstrained critical problems and extensions of unconstrained Schrodinger problems with Rabinowitz-type trapping potential. Especially, in this scenario, we develop some sharp estimates of energy levels and ingenious analysis techniques to restore the compactness which are novel even for b(x) equivalent to constant. We believe that these techniques will allow not only treating other L-2-constrained problems in the Trudinger-Moser critical setting but also generalizing previous results to the case of variable potentials.
Název v anglickém jazyce
NORMALIZED SOLUTIONS FOR SCHRODINGER EQUATIONS WITH CRITICAL EXPONENTIAL GROWTH IN R<SUP>2</SUP>
Popis výsledku anglicky
For any a > 0, we study the existence of normalized solutions and ground state solutions to the following Schrodinger equation with L-2-constraint: { -Delta u + lambda u = b(x)f(u) x is an element of R-2, integral(2)(R) u(2)dx = a, where lambda is an element of R is a Lagrange multiplier, the potential b is an element of C(R-2, (0, infinity)) satisfies 0 < lim(|y|->infinity) b(y) <= inf(x is an element of)R(2) b(x) and appears as a converse direction of the Rabinowitz-type trapping potential, and the reaction f is an element of C(R, R) enjoys critical exponential growth of Trudinger-Moser type. Under two different kinds of assumptions on f, we prove several new existence results, which, in the context of normalized solutions, can be considered as both counterparts of planar unconstrained critical problems and extensions of unconstrained Schrodinger problems with Rabinowitz-type trapping potential. Especially, in this scenario, we develop some sharp estimates of energy levels and ingenious analysis techniques to restore the compactness which are novel even for b(x) equivalent to constant. We believe that these techniques will allow not only treating other L-2-constrained problems in the Trudinger-Moser critical setting but also generalizing previous results to the case of variable potentials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM JOURNAL ON MATHEMATICAL ANALYSIS
ISSN
0036-1410
e-ISSN
1095-7154
Svazek periodika
55
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
37
Strana od-do
7704-7740
Kód UT WoS článku
001114759300005
EID výsledku v databázi Scopus
2-s2.0-85182455753