Channel Impulse Response Peak Clustering Using Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU151103" target="_blank" >RIV/00216305:26220/23:PU151103 - isvavai.cz</a>
Výsledek na webu
<a href="https://commnet-conf.org/6thEditionProceedings/index.html" target="_blank" >https://commnet-conf.org/6thEditionProceedings/index.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CommNet60167.2023.10365265" target="_blank" >10.1109/CommNet60167.2023.10365265</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Channel Impulse Response Peak Clustering Using Neural Networks
Popis výsledku v původním jazyce
This paper introduces an approach to process channel sounder data acquired from Channel Impulse Response (CIR) of 60GHz and 80GHz channel sounder systems, through the integration of Long Short-Term Memory (LSTM) Neural Network (NN) and Fully Connected Neural Network (FCNN). Theprimary goal is to enhance and automate cluster detection within peaks from noised CIR data. The study initially compares the performance of LSTM NN and FCNN across different input sequence lengths. Notably, LSTM surpasses FCNN due to its incorporation of memory cells, which prove beneficial for handling longer series. Additionally, the paper investigates the robustness of LSTM NN through various architectural configurations. The findings suggest that robust neural networks tend to closely mimic the input function, whereas smaller neural networks are better at generalizing trends in time series data, which is desirable for anomaly detection, where function peaks are regarded as anomalies. Finally, the selected LSTM NN is compared with traditional signal filters, including Butterworth, Savitzky-Golay, Bessel/Thomson, and median filters. Visual observations indicate that the most effective methods for peak detection within channel impulse response data are either the LSTM NN or median filter, as they yield similar results.
Název v anglickém jazyce
Channel Impulse Response Peak Clustering Using Neural Networks
Popis výsledku anglicky
This paper introduces an approach to process channel sounder data acquired from Channel Impulse Response (CIR) of 60GHz and 80GHz channel sounder systems, through the integration of Long Short-Term Memory (LSTM) Neural Network (NN) and Fully Connected Neural Network (FCNN). Theprimary goal is to enhance and automate cluster detection within peaks from noised CIR data. The study initially compares the performance of LSTM NN and FCNN across different input sequence lengths. Notably, LSTM surpasses FCNN due to its incorporation of memory cells, which prove beneficial for handling longer series. Additionally, the paper investigates the robustness of LSTM NN through various architectural configurations. The findings suggest that robust neural networks tend to closely mimic the input function, whereas smaller neural networks are better at generalizing trends in time series data, which is desirable for anomaly detection, where function peaks are regarded as anomalies. Finally, the selected LSTM NN is compared with traditional signal filters, including Butterworth, Savitzky-Golay, Bessel/Thomson, and median filters. Visual observations indicate that the most effective methods for peak detection within channel impulse response data are either the LSTM NN or median filter, as they yield similar results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GF23-04304L" target="_blank" >GF23-04304L: Vícepásmová predikce šíření milimetrových vln pro dynamické a statické scénáře v členitých časově proměnných prostředích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet)
ISBN
979-8-3503-2939-1
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
Maroko
Místo konání akce
Rabat, Maroko
Datum konání akce
11. 12. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—