Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Single-Channel Speech Quality Enhancement in Mobile Networks Based on Generative Adversarial Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151188" target="_blank" >RIV/00216305:26220/24:PU151188 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11036-024-02300-4" target="_blank" >https://link.springer.com/article/10.1007/s11036-024-02300-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11036-024-02300-4" target="_blank" >10.1007/s11036-024-02300-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Single-Channel Speech Quality Enhancement in Mobile Networks Based on Generative Adversarial Networks

  • Popis výsledku v původním jazyce

    A large amount of randomly generated noise in mobile networks leads to a lack of targeting and gaming processes in the speech enhancement process, and the enhancement process from the perspective of acoustic features alone suffers from major drawbacks. Propose a single-channel speech quality enhancement method based on generative adversarial networks in mobile networks. Explain the principle of generative adversarial network to realize single-channel speech quality enhancement in mobile networks and clarify its shortcomings. Design an improved Mel frequency cepstral coefficient extraction method to extract 12 base features as the enhancement basis. Use the relative average least squares loss instead of the traditional loss function to enhance the training efficiency, use the hybrid penalty term to enhance the generator's ability to generate single-channel speech, and optimize the discriminator through the multi-layer convolution and the addition of fully connected layers to enhance the speech quality enhancement ability of adversarial generative networks in various aspects, forming a relative average generative adversarial network (RaGAN) based on hybrid penalty term to realize single-channel speech quality enhancement processing. Through the experiment, when the discriminator is applied with the size of a 3*3 convolutional kernel, the best effect of speech quality enhancement is achieved in the mobile network. This method can complete the enhancement of single-channel speech quality in the mobile network, and the effect is significant, which can effectively reduce the noise in the original single-channel speech.

  • Název v anglickém jazyce

    Single-Channel Speech Quality Enhancement in Mobile Networks Based on Generative Adversarial Networks

  • Popis výsledku anglicky

    A large amount of randomly generated noise in mobile networks leads to a lack of targeting and gaming processes in the speech enhancement process, and the enhancement process from the perspective of acoustic features alone suffers from major drawbacks. Propose a single-channel speech quality enhancement method based on generative adversarial networks in mobile networks. Explain the principle of generative adversarial network to realize single-channel speech quality enhancement in mobile networks and clarify its shortcomings. Design an improved Mel frequency cepstral coefficient extraction method to extract 12 base features as the enhancement basis. Use the relative average least squares loss instead of the traditional loss function to enhance the training efficiency, use the hybrid penalty term to enhance the generator's ability to generate single-channel speech, and optimize the discriminator through the multi-layer convolution and the addition of fully connected layers to enhance the speech quality enhancement ability of adversarial generative networks in various aspects, forming a relative average generative adversarial network (RaGAN) based on hybrid penalty term to realize single-channel speech quality enhancement processing. Through the experiment, when the discriminator is applied with the size of a 3*3 convolutional kernel, the best effect of speech quality enhancement is achieved in the mobile network. This method can complete the enhancement of single-channel speech quality in the mobile network, and the effect is significant, which can effectively reduce the noise in the original single-channel speech.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mobile Networks and Applications

  • ISSN

    1383-469X

  • e-ISSN

    1572-8153

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    neuvedeno

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

    001195684700001

  • EID výsledku v databázi Scopus

    2-s2.0-85189202848