Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hierarchical Discriminative Model for Spoken Language Understanding Based on Convolutional Neural Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F15%3A43926617" target="_blank" >RIV/49777513:23520/15:43926617 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1864.pdf" target="_blank" >http://www.isca-speech.org/archive/interspeech_2015/papers/i15_1864.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hierarchical Discriminative Model for Spoken Language Understanding Based on Convolutional Neural Network

  • Popis výsledku v původním jazyce

    This paper presents a novel method for processing automatic speech recognition (ASR) lattices (and generally weighted finite state acceptors) in feed-forward artificial neural networks. It is based on the existing work focused on the text classification using convolutional neural networks (CNNs). The presented method generalizes the convolutional layer of the neural network so that it is able to process both the posterior probabilities and the lexical information contained in an ASR lattice. The convolutional layer was used in a CNN-based implementation of a hierarchical discriminative model (HDM). The method was evaluated using two semantically annotated corpora and the CNN-based HDM improves performance of a spoken language understanding module in comparison with an original HDM based on Support Vector Machines (SVM)

  • Název v anglickém jazyce

    Hierarchical Discriminative Model for Spoken Language Understanding Based on Convolutional Neural Network

  • Popis výsledku anglicky

    This paper presents a novel method for processing automatic speech recognition (ASR) lattices (and generally weighted finite state acceptors) in feed-forward artificial neural networks. It is based on the existing work focused on the text classification using convolutional neural networks (CNNs). The presented method generalizes the convolutional layer of the neural network so that it is able to process both the posterior probabilities and the lexical information contained in an ASR lattice. The convolutional layer was used in a CNN-based implementation of a hierarchical discriminative model (HDM). The method was evaluated using two semantically annotated corpora and the CNN-based HDM improves performance of a spoken language understanding module in comparison with an original HDM based on Support Vector Machines (SVM)

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 16th Annual Conference of the International Speech Communication Association (Interspeech 2015)

  • ISBN

    978-1-5108-1790-6

  • ISSN

    2308-457X

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    1864-1868

  • Název nakladatele

    Curran Associates, Inc.

  • Místo vydání

    Red Hook, NY

  • Místo konání akce

    Dresden, Germany

  • Datum konání akce

    6. 9. 2015

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000380581600387