Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spectral–Spatial Transformer-based Semantic Segmentation for Large-scale Mapping of Individual Date Palm Trees using Very High-resolution Satellite Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151273" target="_blank" >RIV/00216305:26220/24:PU151273 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1470160X24005673" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1470160X24005673</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ecolind.2024.112110" target="_blank" >10.1016/j.ecolind.2024.112110</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spectral–Spatial Transformer-based Semantic Segmentation for Large-scale Mapping of Individual Date Palm Trees using Very High-resolution Satellite Data

  • Popis výsledku v původním jazyce

    Date palm plantations in the United Arab Emirates (UAE) are under threat from soil salinity, drought, and date palm weevils. Accordingly, monitoring and conserving date palms are crucial to preserving a vital component of the country’s agricultural heritage, economy, food security, and ecological balance. Previous studies have effectively identified date palm trees using RGB-based aerial and UAV imagery utilizing diverse deep learning methods. However, the utilization of very high-resolution satellite data for delineating individual date palm crowns remains unexplored due to the limited spatial resolution capabilities of existing satellite systems. This study primarily aimed to achieve precise and comprehensive mapping of date palm trees using WorldView-3 (WV-3) satellite data by leveraging the high representational power of the state-of-the-art vision transformers (ViT) in capturing global information from the input data. First, an in-depth analysis assessment of the various transformer-based semantic segmentation architectures, including UperNet with vision transformer and Swin transformer, SegFormer, Mask2Former, and UniFormer, was conducted. Second, the integration of spectral data on the performance of ViTs was evaluated. Moreover, the models’ generalizability and complexity effect on the segmentation effectiveness were assessed. Accordingly, a postprocessing strategy was developed to aid in delineating and counting date palm trees from semantic segmentation outputs. Results demonstrated that integration of WV-3 spectral data into the analysis resulted in a marked improvement in segmentation quality. The UniFormer, UperNet-Swin, and Mask2Former models demonstrated considerable improvements in multispectral data analysis, with increases in mean intersection over union (mIoU) of 2.17% (77.88% mIoU, 86.01% mean F-score [mF-score]), 2% (78.10% mIoU, 86.18% mF-score), and 1.15% (77.36% mIoU, 85.59% mF-score), respectively, compared with their RGB-based results. Eval

  • Název v anglickém jazyce

    Spectral–Spatial Transformer-based Semantic Segmentation for Large-scale Mapping of Individual Date Palm Trees using Very High-resolution Satellite Data

  • Popis výsledku anglicky

    Date palm plantations in the United Arab Emirates (UAE) are under threat from soil salinity, drought, and date palm weevils. Accordingly, monitoring and conserving date palms are crucial to preserving a vital component of the country’s agricultural heritage, economy, food security, and ecological balance. Previous studies have effectively identified date palm trees using RGB-based aerial and UAV imagery utilizing diverse deep learning methods. However, the utilization of very high-resolution satellite data for delineating individual date palm crowns remains unexplored due to the limited spatial resolution capabilities of existing satellite systems. This study primarily aimed to achieve precise and comprehensive mapping of date palm trees using WorldView-3 (WV-3) satellite data by leveraging the high representational power of the state-of-the-art vision transformers (ViT) in capturing global information from the input data. First, an in-depth analysis assessment of the various transformer-based semantic segmentation architectures, including UperNet with vision transformer and Swin transformer, SegFormer, Mask2Former, and UniFormer, was conducted. Second, the integration of spectral data on the performance of ViTs was evaluated. Moreover, the models’ generalizability and complexity effect on the segmentation effectiveness were assessed. Accordingly, a postprocessing strategy was developed to aid in delineating and counting date palm trees from semantic segmentation outputs. Results demonstrated that integration of WV-3 spectral data into the analysis resulted in a marked improvement in segmentation quality. The UniFormer, UperNet-Swin, and Mask2Former models demonstrated considerable improvements in multispectral data analysis, with increases in mean intersection over union (mIoU) of 2.17% (77.88% mIoU, 86.01% mean F-score [mF-score]), 2% (78.10% mIoU, 86.18% mF-score), and 1.15% (77.36% mIoU, 85.59% mF-score), respectively, compared with their RGB-based results. Eval

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ECOLOGICAL INDICATORS

  • ISSN

    1470-160X

  • e-ISSN

    1872-7034

  • Svazek periodika

    163

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    1-18

  • Kód UT WoS článku

    001240234600001

  • EID výsledku v databázi Scopus

    2-s2.0-85192470344