A Comprehensive Evaluation of Deep Vision Transformers for Road Extraction from Very-high-resolution Satellite Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F25%3APU154965" target="_blank" >RIV/00216305:26220/25:PU154965 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2666017224000749" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2666017224000749</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.srs.2024.100190" target="_blank" >10.1016/j.srs.2024.100190</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Comprehensive Evaluation of Deep Vision Transformers for Road Extraction from Very-high-resolution Satellite Data
Popis výsledku v původním jazyce
Transformer-based semantic segmentation architectures excel in extracting road networks from very-high-resolution (VHR) satellite images due to their ability to capture global contextual information. Nonetheless, there is a gap in research regarding their comparative effectiveness, efficiency, and performance in extracting road networks from multicity VHR data. This study evaluates 11 transformer-based models on three publicly available datasets (DeepGlobe Road Extraction Dataset, SpaceNet-3 Road Network Detection Dataset, and Massachusetts Road Dataset) to assess their performance, efficiency, and complexity in mapping road networks from multicity VHR satellite images. The evaluated models include Unified Perceptual Parsing for Scene Understanding (UperNet) based on the Swin transformer (UperNet-SwinT), and Multi-path Vision Transformer (UperNet-MpViT), Twins transformer, Segmenter, SegFormer, K-Net based on SwinT, Mask2Former based on SwinT (Mask2Former-SwinT), TopFormer, UniFormer, and PoolFormer. Results showed that the models recorded mean F-scores (mF-score) ranging from 82.22% to 90.70% for the DeepGlobe dataset, 58.98% to 86.95% for the Massachusetts dataset, and 69.02% to 86.14% for the SpaceNet-3 dataset. Mask2Former-SwinT, UperNet-MpViT, and SegFormer were the top performers among the evaluated models. The Mask2Former, based on the SwinT, demonstrated a strong balance of high performance across different satellite image datasets and moderate computational efficiency. This investigation aids in selecting the most suitable model for extracting road networks from remote sensing data.
Název v anglickém jazyce
A Comprehensive Evaluation of Deep Vision Transformers for Road Extraction from Very-high-resolution Satellite Data
Popis výsledku anglicky
Transformer-based semantic segmentation architectures excel in extracting road networks from very-high-resolution (VHR) satellite images due to their ability to capture global contextual information. Nonetheless, there is a gap in research regarding their comparative effectiveness, efficiency, and performance in extracting road networks from multicity VHR data. This study evaluates 11 transformer-based models on three publicly available datasets (DeepGlobe Road Extraction Dataset, SpaceNet-3 Road Network Detection Dataset, and Massachusetts Road Dataset) to assess their performance, efficiency, and complexity in mapping road networks from multicity VHR satellite images. The evaluated models include Unified Perceptual Parsing for Scene Understanding (UperNet) based on the Swin transformer (UperNet-SwinT), and Multi-path Vision Transformer (UperNet-MpViT), Twins transformer, Segmenter, SegFormer, K-Net based on SwinT, Mask2Former based on SwinT (Mask2Former-SwinT), TopFormer, UniFormer, and PoolFormer. Results showed that the models recorded mean F-scores (mF-score) ranging from 82.22% to 90.70% for the DeepGlobe dataset, 58.98% to 86.95% for the Massachusetts dataset, and 69.02% to 86.14% for the SpaceNet-3 dataset. Mask2Former-SwinT, UperNet-MpViT, and SegFormer were the top performers among the evaluated models. The Mask2Former, based on the SwinT, demonstrated a strong balance of high performance across different satellite image datasets and moderate computational efficiency. This investigation aids in selecting the most suitable model for extracting road networks from remote sensing data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2025
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science of Remote Sensing
ISSN
2666-0172
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
„“-„“
Kód UT WoS článku
001399325200001
EID výsledku v databázi Scopus
2-s2.0-85214196971