Comparative Analysis of Classification Methods and Suitable Datasets for Protocol Recognition in Operational Technologies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151320" target="_blank" >RIV/00216305:26220/24:PU151320 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1999-4893/17/5/208" target="_blank" >https://www.mdpi.com/1999-4893/17/5/208</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/a17050208" target="_blank" >10.3390/a17050208</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparative Analysis of Classification Methods and Suitable Datasets for Protocol Recognition in Operational Technologies
Popis výsledku v původním jazyce
The interconnection of Operational Technology (OT) and Information Technology (IT) has created new opportunities for remote management, data storage in the cloud, real-time data transfer over long distances, or integration between different OT and IT networks. OT networks require increased attention due to the convergence of IT and OT, mainly due to the increased risk of cyber-attacks targeting these networks. This paper focuses on the analysis of different methods and data processing for protocol recognition and traffic classification in the context of OT specifics. Therefore, this paper summarizes the methods used to classify network traffic, analyzes the methods used to recognize and identify the protocol used in the industrial network, and describes machine learning methods to recognize industrial protocols. The output of this work is a comparative analysis of approaches specifically for protocol recognition and traffic classification in OT networks. In addition, publicly available datasets are compared in relation to their applicability for industrial protocol recognition. Research challenges are also identified, highlighting the lack of relevant datasets and defining directions for further research in the area of protocol recognition and classification in OT environments.
Název v anglickém jazyce
Comparative Analysis of Classification Methods and Suitable Datasets for Protocol Recognition in Operational Technologies
Popis výsledku anglicky
The interconnection of Operational Technology (OT) and Information Technology (IT) has created new opportunities for remote management, data storage in the cloud, real-time data transfer over long distances, or integration between different OT and IT networks. OT networks require increased attention due to the convergence of IT and OT, mainly due to the increased risk of cyber-attacks targeting these networks. This paper focuses on the analysis of different methods and data processing for protocol recognition and traffic classification in the context of OT specifics. Therefore, this paper summarizes the methods used to classify network traffic, analyzes the methods used to recognize and identify the protocol used in the industrial network, and describes machine learning methods to recognize industrial protocols. The output of this work is a comparative analysis of approaches specifically for protocol recognition and traffic classification in OT networks. In addition, publicly available datasets are compared in relation to their applicability for industrial protocol recognition. Research challenges are also identified, highlighting the lack of relevant datasets and defining directions for further research in the area of protocol recognition and classification in OT environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/FW07010004" target="_blank" >FW07010004: Využití předností sítí páté generace pro monitorování, optimalizaci a zefektivnění výrobního procesu v chytrých továrnách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithms
ISSN
1999-4893
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
1-20
Kód UT WoS článku
001232223700001
EID výsledku v databázi Scopus
—