Exploring the Power of Convolutional Neural Networks for Encrypted Industrial Protocols Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU149997" target="_blank" >RIV/00216305:26220/24:PU149997 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S2352467723002771" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S2352467723002771</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.segan.2023.101269" target="_blank" >10.1016/j.segan.2023.101269</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring the Power of Convolutional Neural Networks for Encrypted Industrial Protocols Recognition
Popis výsledku v původním jazyce
The main objective of this paper is to classify unencrypted and encrypted industrial protocols using deep learning, especially Convolutional Neural Networks. Protocol recognition is important for network security and network analysis. Overall knowledge of industrial protocols and networks is crucial, especially in operational technologies. Five industrial protocol standards are under investigation, namely IEC 60870-5-104, IEC 61850 (MMS, GOOSE, SV) and Modbus/TCP. It is also investigated whether the selected protocols can be recognized in their encrypted version. Furthermore, it is investigated whether this encrypted traffic is recognizable from the use of VPN technology. Three convolutional neural network models were trained to recognize industrial protocols. These networks outperform traditional machine learning in pattern recognition in several areas of classification. By converting the captured traffic into image data that convolutional neural networks work with, differences in the encrypted traffic of different industrial protocols can be recognized. Three scenarios (1D, 2D, PKT) are presented using convolutional neural network models with 1D and 2D architectures. Training, testing and validation data are used to verify each scenario. An accuracy of 96-97 % is achieved for the recognition of unencrypted and encrypted industrial protocols. According to the results, 2D convolutional neural network model is faster than 1D and PKT models. The 1D and 2D models are suitable for use in protocol specific networks. Another application of these models can be anomaly detection in these networks. The PKT model is useful in networks with multiple industry protocols because it can evaluate network traffic on a packet-by-packet basis.
Název v anglickém jazyce
Exploring the Power of Convolutional Neural Networks for Encrypted Industrial Protocols Recognition
Popis výsledku anglicky
The main objective of this paper is to classify unencrypted and encrypted industrial protocols using deep learning, especially Convolutional Neural Networks. Protocol recognition is important for network security and network analysis. Overall knowledge of industrial protocols and networks is crucial, especially in operational technologies. Five industrial protocol standards are under investigation, namely IEC 60870-5-104, IEC 61850 (MMS, GOOSE, SV) and Modbus/TCP. It is also investigated whether the selected protocols can be recognized in their encrypted version. Furthermore, it is investigated whether this encrypted traffic is recognizable from the use of VPN technology. Three convolutional neural network models were trained to recognize industrial protocols. These networks outperform traditional machine learning in pattern recognition in several areas of classification. By converting the captured traffic into image data that convolutional neural networks work with, differences in the encrypted traffic of different industrial protocols can be recognized. Three scenarios (1D, 2D, PKT) are presented using convolutional neural network models with 1D and 2D architectures. Training, testing and validation data are used to verify each scenario. An accuracy of 96-97 % is achieved for the recognition of unencrypted and encrypted industrial protocols. According to the results, 2D convolutional neural network model is faster than 1D and PKT models. The 1D and 2D models are suitable for use in protocol specific networks. Another application of these models can be anomaly detection in these networks. The PKT model is useful in networks with multiple industry protocols because it can evaluate network traffic on a packet-by-packet basis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/FW07010004" target="_blank" >FW07010004: Využití předností sítí páté generace pro monitorování, optimalizaci a zefektivnění výrobního procesu v chytrých továrnách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainable Energy, Grids and Networks
ISSN
2352-4677
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
June 2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
001172210100001
EID výsledku v databázi Scopus
2-s2.0-85182874251