Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Convolutional Neural Network-Based Classification of Secured IEC 104 Traffic in Energy Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149866" target="_blank" >RIV/00216305:26220/23:PU149866 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3638782.3638806" target="_blank" >https://doi.org/10.1145/3638782.3638806</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3638782.3638806" target="_blank" >10.1145/3638782.3638806</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Convolutional Neural Network-Based Classification of Secured IEC 104 Traffic in Energy Systems

  • Popis výsledku v původním jazyce

    This paper focuses on the classification of secure IEC 104 protocol traffic in energy systems using a specific convolutional neural network model. Secure communication of the IEC 104 protocol was used to train the network. The data were obtained using a special network traffic simulator and from an energy testbed. In order to analyze secure communication, a classifier was developed to identify the individual operating states of the communicating station. In this article, we focused on the classification of IEC 104 protocol communication with TLS security. The classifier consisted of a convolutional neural network with a defined two-dimensional input matrix. The matrix was composed of the information from five consecutive packets. The information was constructed from the interarrival time between packets, the length of TLS encrypted application data, and the encrypted application data up to 64B in size. To obtain enough data to train the convolutional network, a simulator of characteristic messages for each state was developed. The classifier was trained to accurately classify the ”Normal operation” and ”Short circuit” states of the station, achieving a probability exceeding 90% for the distinct data flow. However, in the case of other operating states characterized by subtle differences, misclassification occurred between two states sharing similar characteristics.

  • Název v anglickém jazyce

    Convolutional Neural Network-Based Classification of Secured IEC 104 Traffic in Energy Systems

  • Popis výsledku anglicky

    This paper focuses on the classification of secure IEC 104 protocol traffic in energy systems using a specific convolutional neural network model. Secure communication of the IEC 104 protocol was used to train the network. The data were obtained using a special network traffic simulator and from an energy testbed. In order to analyze secure communication, a classifier was developed to identify the individual operating states of the communicating station. In this article, we focused on the classification of IEC 104 protocol communication with TLS security. The classifier consisted of a convolutional neural network with a defined two-dimensional input matrix. The matrix was composed of the information from five consecutive packets. The information was constructed from the interarrival time between packets, the length of TLS encrypted application data, and the encrypted application data up to 64B in size. To obtain enough data to train the convolutional network, a simulator of characteristic messages for each state was developed. The classifier was trained to accurately classify the ”Normal operation” and ”Short circuit” states of the station, achieving a probability exceeding 90% for the distinct data flow. However, in the case of other operating states characterized by subtle differences, misclassification occurred between two states sharing similar characteristics.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FW06010490" target="_blank" >FW06010490: Krypto portál chytrého měření</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 2023 13th International Conference on Communication and Network Security

  • ISBN

    979-8-4007-0796-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    159-165

  • Název nakladatele

    ACM

  • Místo vydání

    New York, NY, USA

  • Místo konání akce

    Fuzhou, China

  • Datum konání akce

    1. 12. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku