Convolutional Neural Network-Based Classification of Secured IEC 104 Traffic in Energy Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149866" target="_blank" >RIV/00216305:26220/23:PU149866 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3638782.3638806" target="_blank" >https://doi.org/10.1145/3638782.3638806</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3638782.3638806" target="_blank" >10.1145/3638782.3638806</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convolutional Neural Network-Based Classification of Secured IEC 104 Traffic in Energy Systems
Popis výsledku v původním jazyce
This paper focuses on the classification of secure IEC 104 protocol traffic in energy systems using a specific convolutional neural network model. Secure communication of the IEC 104 protocol was used to train the network. The data were obtained using a special network traffic simulator and from an energy testbed. In order to analyze secure communication, a classifier was developed to identify the individual operating states of the communicating station. In this article, we focused on the classification of IEC 104 protocol communication with TLS security. The classifier consisted of a convolutional neural network with a defined two-dimensional input matrix. The matrix was composed of the information from five consecutive packets. The information was constructed from the interarrival time between packets, the length of TLS encrypted application data, and the encrypted application data up to 64B in size. To obtain enough data to train the convolutional network, a simulator of characteristic messages for each state was developed. The classifier was trained to accurately classify the ”Normal operation” and ”Short circuit” states of the station, achieving a probability exceeding 90% for the distinct data flow. However, in the case of other operating states characterized by subtle differences, misclassification occurred between two states sharing similar characteristics.
Název v anglickém jazyce
Convolutional Neural Network-Based Classification of Secured IEC 104 Traffic in Energy Systems
Popis výsledku anglicky
This paper focuses on the classification of secure IEC 104 protocol traffic in energy systems using a specific convolutional neural network model. Secure communication of the IEC 104 protocol was used to train the network. The data were obtained using a special network traffic simulator and from an energy testbed. In order to analyze secure communication, a classifier was developed to identify the individual operating states of the communicating station. In this article, we focused on the classification of IEC 104 protocol communication with TLS security. The classifier consisted of a convolutional neural network with a defined two-dimensional input matrix. The matrix was composed of the information from five consecutive packets. The information was constructed from the interarrival time between packets, the length of TLS encrypted application data, and the encrypted application data up to 64B in size. To obtain enough data to train the convolutional network, a simulator of characteristic messages for each state was developed. The classifier was trained to accurately classify the ”Normal operation” and ”Short circuit” states of the station, achieving a probability exceeding 90% for the distinct data flow. However, in the case of other operating states characterized by subtle differences, misclassification occurred between two states sharing similar characteristics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/FW06010490" target="_blank" >FW06010490: Krypto portál chytrého měření</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2023 13th International Conference on Communication and Network Security
ISBN
979-8-4007-0796-4
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
159-165
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Fuzhou, China
Datum konání akce
1. 12. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—