Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis of Statistical Distribution Changes of Input Features in Network Traffic Classification Domain

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F24%3A10133690" target="_blank" >RIV/63839172:_____/24:10133690 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/24:00375887

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10575630" target="_blank" >https://ieeexplore.ieee.org/document/10575630</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575630" target="_blank" >10.1109/NOMS59830.2024.10575630</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of Statistical Distribution Changes of Input Features in Network Traffic Classification Domain

  • Popis výsledku v původním jazyce

    This study investigates the evolving landscape of network traffic monitoring, which is crucial for maintaining computer network services and security. Traditional methods like Deep Packet Inspection (DPI) face challenges due to increased privacy protection through encryption, prompting a shift towards statistical-based detection using Machine Learning (ML). On the other hand, ML struggles with long-term evaluation due to various distribution changes. This study focuses on the CESNET-TLS-Year22 dataset, derived from one year of TLS network traffic on the CESNET2 backbone. Described research explores the behavior of modern protocols in real-world scenarios and their impact on dataset quality. The main result of our analysis is the identification of the Weekend phenomenon in network traffic classification that is generally overlooked during ML model training.

  • Název v anglickém jazyce

    Analysis of Statistical Distribution Changes of Input Features in Network Traffic Classification Domain

  • Popis výsledku anglicky

    This study investigates the evolving landscape of network traffic monitoring, which is crucial for maintaining computer network services and security. Traditional methods like Deep Packet Inspection (DPI) face challenges due to increased privacy protection through encryption, prompting a shift towards statistical-based detection using Machine Learning (ML). On the other hand, ML struggles with long-term evaluation due to various distribution changes. This study focuses on the CESNET-TLS-Year22 dataset, derived from one year of TLS network traffic on the CESNET2 backbone. Described research explores the behavior of modern protocols in real-world scenarios and their impact on dataset quality. The main result of our analysis is the identification of the Weekend phenomenon in network traffic classification that is generally overlooked during ML model training.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    NOMS 2024-2024 IEEE Network Operations and Management Symposium

  • ISBN

    979-8-3503-2793-9

  • ISSN

    2374-9709

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

    New York

  • Místo konání akce

    Seoul, South Korea

  • Datum konání akce

    6. 5. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001270140300155