Active Learning Framework For Long-term Network Traffic Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F23%3A10133626" target="_blank" >RIV/63839172:_____/23:10133626 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/23:00366203
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10099065" target="_blank" >https://ieeexplore.ieee.org/document/10099065</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CCWC57344.2023.10099065" target="_blank" >10.1109/CCWC57344.2023.10099065</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Active Learning Framework For Long-term Network Traffic Classification
Popis výsledku v původním jazyce
Recent network traffic classification methods benefit from machine learning (ML) technology. However, there are many challenges due to the use of ML, such as lack of high-quality annotated datasets, data drifts and other effects causing aging of datasets and ML models, high volumes of network traffic, etc. This paper presents the benefits of augmenting traditional workflows of ML training&deployment and adaption of the Active Learning (AL) concept on network traffic analysis. The paper proposes a novel Active Learning Framework (ALF) to address this topic. ALF provides prepared software components that can be used to deploy an AL loop and maintain an ALF instance that continuously evolves a dataset and ML model automatically. Moreover, ALF includes monitoring, datasets quality evaluation, and optimization capabilities that enhance the current state of the art in the AL domain. The resulting solution is deployable for IP flow-based analysis of high-speed (100 Gb/s) networks, where it was evaluated for more than eight months. Additional use cases were evaluated on publicly available datasets.
Název v anglickém jazyce
Active Learning Framework For Long-term Network Traffic Classification
Popis výsledku anglicky
Recent network traffic classification methods benefit from machine learning (ML) technology. However, there are many challenges due to the use of ML, such as lack of high-quality annotated datasets, data drifts and other effects causing aging of datasets and ML models, high volumes of network traffic, etc. This paper presents the benefits of augmenting traditional workflows of ML training&deployment and adaption of the Active Learning (AL) concept on network traffic analysis. The paper proposes a novel Active Learning Framework (ALF) to address this topic. ALF provides prepared software components that can be used to deploy an AL loop and maintain an ALF instance that continuously evolves a dataset and ML model automatically. Moreover, ALF includes monitoring, datasets quality evaluation, and optimization capabilities that enhance the current state of the art in the AL domain. The resulting solution is deployable for IP flow-based analysis of high-speed (100 Gb/s) networks, where it was evaluated for more than eight months. Additional use cases were evaluated on publicly available datasets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC
ISBN
979-8-3503-3286-5
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
893-899
Název nakladatele
IEEE
Místo vydání
NEW YORK
Místo konání akce
Las Vegas, USA
Datum konání akce
8. 3. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000995182600138