Vision of Active Learning Framework Approach to Network Traffic Analysis Research
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00358729" target="_blank" >RIV/68407700:21240/22:00358729 - isvavai.cz</a>
Výsledek na webu
<a href="https://pesw.fit.cvut.cz/2022/PESW_2022.pdf" target="_blank" >https://pesw.fit.cvut.cz/2022/PESW_2022.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vision of Active Learning Framework Approach to Network Traffic Analysis Research
Popis výsledku v původním jazyce
Current research in the network security domain intensively uses machine learning (ML) and artificial intelligence to automate processes and reveal hidden patterns in data. These technologies, however, require lots of training datasets with ideally high quality. Additionally, network infrastructures continuously evolve and thus network traffic dynamically changes in time as well. There is an urgent need to adapt machine learning models, update datasets with the latest samples of annotated network traffic and retrain the models regularly to sustain feasible performance. Active Learning Framework (ALF) directly targets these demands and aims to provide a modular platform for scientific experiments and deployment in practice as well as to support research activities regarding quality of datasets. This paper particularly describes ALF software and proposes its possible use cases in research and practice domains.
Název v anglickém jazyce
Vision of Active Learning Framework Approach to Network Traffic Analysis Research
Popis výsledku anglicky
Current research in the network security domain intensively uses machine learning (ML) and artificial intelligence to automate processes and reveal hidden patterns in data. These technologies, however, require lots of training datasets with ideally high quality. Additionally, network infrastructures continuously evolve and thus network traffic dynamically changes in time as well. There is an urgent need to adapt machine learning models, update datasets with the latest samples of annotated network traffic and retrain the models regularly to sustain feasible performance. Active Learning Framework (ALF) directly targets these demands and aims to provide a modular platform for scientific experiments and deployment in practice as well as to support research activities regarding quality of datasets. This paper particularly describes ALF software and proposes its possible use cases in research and practice domains.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010024" target="_blank" >VJ02010024: Analýza šifrovaného provozu pomocí síťových toků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů